
Received: 24 September 2024 Revised: 18 March 2025 Accepted: 21 March 2025

DOI: 10.1111/sjos.12786

O R I G I N A L A R T I C L E

Enhanced branching Latin hypercube design
and its application in automatic
algorithm configuration

Bing Wen1 Sumin Wang2 Fasheng Sun1

1KLAS and School of Mathematics and
Statistics, Northeast Normal University,
Changchun, China
2Department of Statistics, School of
Sciences, Hebei University of Technology,
Tianjin, China

Correspondence
Fasheng Sun, KLAS and School of
Mathematics and Statistics, Northeast
Normal University, Changchun 130022,
China.
Email: sunfs359@nenu.edu.cn

Funding information
National Natural Science Foundation of
China, Grant/Award Numbers: 12371259,
12401324; Fundamental Research Funds
for the Central Universities, Grant/Award
Number: 2412023YQ003

Abstract
Designing experiments that involve branching and
nested factors is challenging due to the complex relation-
ships between these factors. Identification of optimal
settings requires designs with good stratification prop-
erties for both nested and shared factors. To meet this
requirement, we defined a type of enhanced branch-
ing Latin hypercube designs and developed several
novel construction methods by integrating orthogonal
arrays and sliced Latin hypercube designs. These designs
exhibit attractive low-dimensional stratification proper-
ties and perform well in terms of column correlation.
Additionally, the size of each design can be flexibly
chosen based on the trade-off between the experimen-
tal budget and estimation accuracy. The simulation
results demonstrate that the proposed design method
exhibits significant superiority in terms of design met-
rics and estimation accuracy. Furthermore, we show-
case the application of these designs in initializing
automatic algorithm configuration. The proofs and addi-
tional design tables are provided in the Appendix.

K E Y W O R D S

branching factor, computer experiment, nested factor, orthogonal
array, sliced Latin hypercube design, space-filling design

© 2025 The Board of the Foundation of the Scandinavian Journal of Statistics.

Scand J Statist. 2025;1–42. wileyonlinelibrary.com/journal/sjos 1

https://orcid.org/0000-0003-2410-4018
http://wileyonlinelibrary.com/journal/SJOS
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fsjos.12786&domain=pdf&date_stamp=2025-04-10

2 WEN et al.

1 INTRODUCTION

Computer experiments are extensively used in investigating complex phenomena across var-
ious fields. Latin hypercube designs are commonly used in computer experiments. However,
these methods are not suitable for experiments involving branching and nested factors (Hung
et al., 2009). In these experiments, some factors exist only within one level of another factor,
such factors are called nested factors. Factors within which other factors are nested are called
branching factors. The remaining factors that are unrelated to the level of branching factors are
called shared factors. For example, two surface preparation methods are used in printed circuit
board manufacturing: mechanical scrubbing and chemical treatment. Mechanical scrubbing can
be optimized by changing the pressure of the scrub, and chemical treatment can be optimized by
changing the micro-etch rate. The surface preparation method here is a branching factor, and the
pressure and micro-etch rate are nested factors (Hung et al., 2009).

Because the nested factors differ at different levels of a branching factor, their effects will
also be different. It is challenging to construct designs involving both branching and nested fac-
tors. Hung et al. (2009) proposed a novel design approach for simultaneously identifying the
optimal settings of branching, nested, and shared factors. They defined a class of designs called
branching Latin hypercube designs (BLHDs), D = (D1,D2,D3), where D1, D2, and D3 represent
the designs for branching factors, nested factors, and shared factors, respectively. A BLHD is
also abbreviated as BLHD(N, q + m + r), assuming that the experiment incorporates q branching
factors, m nested factors, and r shared factors. Furthermore, it is assumed that the ith branch-
ing factor encompasses mi nested factors, leading to the total number of nested factors being
m = m1 + · · · + mq. Hung et al. (2009) suggested that design D should satisfy the following prop-
erties: (1) the design D1 for branching factors is an orthogonal array (OA), (2) the design for shared
factors D3 is a Latin hypercube design (LHD), and (3) the design for the corresponding nested
factors after level collapse under each level of any branching factor is an LHD. For example, the
design shown in Table 1 is a BLHD with 16 runs and 5 factors, where z1 and z2 represent two
branching factors; vz1

1 and vz2
1 are nested factors within each level of z1 and z2, respectively; and

x1 represents a shared factor. In addition, Goos and Jones (2019) presented a general method
for constructing appropriate models and showed how to generate optimal designs given these
models. Wei et al. (2022) considered the orthogonality within BLHDs and constructed a type of
design called branching orthogonal Latin hypercube design. In addition to computer experiments,
the BLHDs can also be used in the initialization of automatic algorithm configuration, which
can be referred to Wessing and López-Ibáñez (2019). Besides, potential applications of BLHDs
include Bayesian optimization, which can be used as a space-filling design to generate the ini-
tial samples and evaluate to obtain the training set (Guo et al., 2023; Wang & Dowling, 2022;
Zhang et al., 2020).

To the best of our knowledge, existing research has not thoroughly considered the space-filling
properties of all nested and shared factors across specific combinations of branching factor levels.
This aspect is pivotal for enhancing the accuracy of estimating interaction effects. Furthermore,
current methodologies often lack flexibility and struggle to adjust the number of experiments
freely. In response to these challenges, we define a type of enhanced branching Latin hypercube
designs, abbreviated as EBLHDs. And we develop a novel construction approach for EBLHDs by
integrating OAs and SLHDs. The proposed method ingeniously uses OAs as the basic framework
and combines them with SLHDs to jointly construct efficient designs. For a given OA, we can flex-
ibly choose SLHDs of different scales to meet practical needs based on the trade-off between the
experimental budget and estimation accuracy. This flexibility serves as one of the driving forces

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

WEN et al. 3

T A B L E 1 A design BLHD(16, 2 + 2 + 1).

D1 D2 D3

Run z1 z2 vz1
1 vz2

1 x1

1 0 0 0 3 0

2 0 0 2 5 12

3 0 0 4 1 8

4 0 0 6 7 4

5 0 1 3 0 10

6 0 1 1 6 2

7 0 1 5 2 6

8 0 1 7 4 14

9 1 0 3 0 11

10 1 0 1 6 3

11 1 0 5 2 7

12 1 0 7 4 15

13 1 1 0 3 1

14 1 1 2 5 13

15 1 1 4 1 9

16 1 1 6 7 5

behind the work presented in this article. Additionally, we provide a method to construct the
required SLHDs with excellent stratification properties. Through a carefully designed hierarchical
structure, we ensure exceptional space-filling, making the selected design points more represen-
tative and comprehensive. This design strategy not only enhances the accuracy and reliability of
parameter estimation but also improves the precision and robustness of the estimated models.
Beyond its application in computer experiments, this design can also be used for the initialization
of automatic algorithm configuration.

To enhance the space-filling properties of all nested and shared factors across specific level
combinations of branching factors, we define EBLHD as presented in Definition 1. Note that the
BLHD defined in Hung et al. (2009) does not satisfy condition (4). Additionally, marginally cou-
pled designs (Deng et al., 2015) are suitable for computer experiments with both qualitative and
quantitative factors, which is different from the scenario in which EBLHDs are applied. Specif-
ically, marginal coupled design is a special case of EBLHD, where there are no nested factors
in the experiment, and the branching factors are qualitative while the shared factors are quan-
titative. As an example, we can refer to the BLHD(16, 2 + 2 + 1) in Table 1, which is essentially
an EBLHD.

Definition 1. D = (D1,D2,D3) is called an enhanced branching Latin hypercube
design (EBLHD) if it satisfies the following:

1. The design for branching factors D1 is an OA.
2. The design for shared factors D3 is an LHD.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 WEN et al.

3. Under each level of any branching factor, the design for the corresponding nested
factors after level collapse is an LHD.

4. Under each level combination of all branching factors, the design for the cor-
responding nested factors and shared factors (D2,D3) after level collapse is an
LHD.

The remainder of this article is organized as follows: Section 2 introduces basic definitions
and notations. Section 3 presents two frameworks for constructing EBLHDs with equal-level
branching factors. In addition, to enhance the space-filling performance of EBLHDs, we intro-
duce several construction methods for SLHDs with low-dimensional stratification. Section 4
discusses the generation of EBLHDs with mixed-level branching factors. Section 5 presents
the performance of our proposed designs in simulation studies. Then, Section 6 demonstrates
the application of EBLHDs in the initialization of automatic algorithm configuration. Finally,
Section 7 provides a summary. All proofs and some construction results are included in the
Appendix A–C.

2 NOTATION AND PRELIMINARIES

A mixed orthogonal array MOA(n, sk1
1 sk2

2 …skv
v , t) is an array of n × m, where m = k1 + · · · + kv is the

total number of factors, in which the first k1 columns have entries from Zs1 , the next k2 columns
have entries from Zs2 , and so on, with the property that each possible level combination in any
n × t sub-array appears with the same frequency, where Zs = {0, 1,…, s − 1} (Hedayat et al., 1999).
If all sj’s are equal to s, the array is called a symmetric orthogonal array, denoted by OA(n,m, s, t).
The array is called completely resolvable, denoted by CROA(n,m, s, 2), if it can be expressed as
A = (AT

1 ,…,AT
n∕s)

T such that each Ai is an OA(s,m, s, 1). For simplicity, we use the symbol ⃛ ∈ ε
to indicate that a certain matrix or column belongs to a specified design class. For instance, A ∈
OA(n,m, s, 2) implies that A is an orthogonal array of type OA(n,m, s, 2). The following conclusion
can be directly derived from He et al. (2018).

Proposition 1. Suppose that (a1, a2) ∈ OA(n, 2, s, 2) and (b1, b2) ∈ MOA(n, 𝛼1𝛽1, 2).
Then, (𝛼a1 + b1, 𝛽a2 + b2) can achieve 𝛼s × s and s × 𝛽s stratification in two dimen-
sions if (a1, a2, b1) and (a1, a2, b2) constitute MOA(n, s2𝛼1, 3) and MOA(n, s2𝛽1, 3),
respectively.

An orthogonal array (OA) of type OA(n,m,n, 1) is referred to as a Latin hypercube design
(LHD), proposed by McKay et al. (1979), denoted by LHD(n,m). An LHD(n,m) with n = sq is
termed a sliced Latin hypercube design represented as SLHD(n,m, s), proposed by Qian (2012),
if it can be partitioned into s slices L = (LT

1 ,…,LT
s)T such that each

⌊
Li
s

⌋
is an LHD(q,m) for

i = 1,…, s. To guarantee higher-dimensional stratification for LHDs, Tang (1993) proposed
orthogonal array-based Latin hypercube designs (OA-based LHDs). They demonstrated that,
when used for integration, a sampling scheme based on OA-based LHDs with higher-dimensional
stratification offers a significant improvement over traditional Latin hypercube sampling. In
this article, we use the following methods to generate OA-based LHDs. For A ∈ OA(n,m, s, t),
we replace n∕s occurrences of j in each column with a permutation of jn∕s + Zn∕s for
0 ≤ j ≤ s − 1.

Additionally, there are several symbols used in the construction. For n1 × m matrix
A = (a1,…, am) and n2 × m matrix B = (b1,…, bm), we define A ⊕c B = (a1 ⊕ b1,…, am ⊕ bm),

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

WEN et al. 5

an n1n2 × m matrix, where ⊕ is the Kronecker sum. A ⧵ ai includes all the remaining columns
in A except ai. For any two n-run designs D and D′, 𝜌max(D) denotes the maximum correlation
coefficient of D, and 𝜌max(D,D′) represents the maximum correlation coefficient of a column
from D and a column from D′.

This article assumes that there are q branching factors, denoted by z = (z1,…, zq), and
mu factors nested under each level of branching factor zu, expressed as vzu = (vzu

1 ,…, vzu
mu
)

for u = 1,…, q. Additionally, there are r shared factors, denoted by x = (x1,…, xr). The nota-
tion EBLHD(N, q + m + r) represents an EBLHD with N-run, q branching factors, m = Σq

u=1mu
nested factors and r shared factors. This design can be expressed as D = (D1,D2,D3), where
D1, D2, and D3 represent the designs for the branching factors, nested factors, and shared fac-
tors, respectively. In this article, the branching factors are assumed to be qualitative factors,
and D1 is chosen to be an OA. Consequently, our primary focus is on the construction of
D2 and D3.

3 CONSTRUCTION OF EBLHDS WITH EQUAL-LEVEL
BRANCHING FACTORS

This section describes the scenario in which all branching factors are equal-level, and the
scenarios involving mixed-level branching factors are described in the next section.

3.1 Construction of EBLHDs

We construct a type of EBLHD(N = s2n2, q + m + r) in the presence of OA(n1 = s2, q + 1, s, 2) and
SLHD(sn2, k, s), where m = m1 + · · · + mq, k = m + r, s represents the level of branching factor.
First, an illustrative example is provided in Example 1, followed by the general construction
process in Algorithm 1.

Example 1. We assume that there are two branching factors z1 and z2 with levels
from Z3. Each branching factor corresponds to a nested factor, denoted as vz1

1 and vz2
1 ,

respectively. There is also one shared factor. In this case, s = 3, q = 2, m1 = m2 = 1,
m = 2, r = 1, and k = 3.

Algorithm 1. EBLHD(N = s2n2, q + m + r)

Input A ∈ OA(n1 = s2, q + 1, s, 2), L ∈ SLHD(sn2, k = m + r, s), B ∈ OA(n1, r, s, 1).
Step 1. Denote the columns of A by A = (a1,… , aq+1). For branching factors, we define

D1 = (A ⧵ aq+1)⊗ 1n2 .
Step 2. Express the slices of L as L = (LT

0 ,… ,LT
s−1)

T and divide each Li = (Pi,Qi), where Pi and
Qi contain m and r columns, respectively.
Step 3. For i = 0,… , s − 1, replace the level i in aq+1 with slice Li to obtain the design (D2, D̃3),
where D2 and D̃3 consist of m and r columns, respectively.
Step 4. Define D3 = sD̃3 + B ⊗ 1n2 , where B = (b1,… , br), each pair column (bi, aq+1) forms
an OA(n1, 2, s, 2), i = 1,… , r. Typically, we can directly select bi from A ⧵ aq+1.

Output Design D = (D1,D2,D3).

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6 WEN et al.

T A B L E 2 OA(9, 3, 3, 2) and design D = (D1,D2,D3) in Example 1.

A ∶ OA(9, 3, 3, 2)

a1 a2 a3 D1 D2 D̃3 D3
0 0 0 09 09 P0 Q0 0 + 3Q0

0 1 1 09 19 P1 Q1 1 + 3Q1

0 2 2 09 29 P2 Q2 2 + 3Q2

1 0 1 19 09 P1 Q1 0 + 3Q1

1 1 2 19 19 P2 Q2 1 + 3Q2

1 2 0 19 29 P0 Q0 2 + 3Q0

2 0 2 29 09 P2 Q2 0 + 3Q2

2 1 0 29 19 P0 Q0 1 + 3Q0

2 2 1 29 29 P1 Q1 2 + 3Q1

Considering A ∈ OA(9, 3, 3, 2) in Table 2 and L ∈ SLHD(27, 3, 3) in Equation (1)
(constructed by Example 4), respectively, our construction is as follows:

LT =
⎛⎜⎜⎜⎝

0 9 18 6 15 24 3 12 21
4 13 22 10 19 1 25 7 16
0 18 9 12 3 21 24 15 6

2 11 20 8 17 26 5 14 23
14 23 5 20 2 11 8 17 26
10 1 19 22 13 4 7 25 16

1 10 19 7 16 25 4 13 22
21 3 12 0 9 18 15 24 6
20 11 2 5 23 14 17 8 26

⎞⎟⎟⎟⎠ (1)

Step 1. We consider A ∈ OA(9, 3, 3, 2) with columns A = (a1, a2, a3) as in Table 2. For
branching factors, we define D1 = (a1, a2)⊗ 19, where ij represents a
j-dimensional column vector with all elements equal to i.

Step 2. We suppose L = (LT
0 ,LT

1 ,LT
2)

T in Equation (1) and divide each Li = (Pi,Qi),
where Pi and Qi contain 2 and 1 columns, respectively. Pi and Qi are the building
materials for the nested factors and shared factors, respectively.

Step 3. For i = 0, 1, 2, level i in a3 is substituted by slice Li to obtain the design
(D2, D̃3), where D2 and D̃3 consist of 2 and 1 columns, respectively.

Step 4. We generate D3 = 3D̃3 + a2 ⊗ 19.

The generating design D = (D1,D2,D3) is an EBLHD(81, 2 + 2 + 1). Upon verifi-
cation, it can be confirmed that for any specified level combination of all branching
factors, the corresponding design points of both nested and shared factors can achieve
3 × 3 stratification in any two dimensions. Furthermore, under each level of any
branching factor, the corresponding design points of (D2,D3) can attain 9 × 3 and
3 × 9 stratification in two dimensions. The stratification properties will be described
in detail in the subsequent sections.

Remark 1. In practical scenarios, a suitable choice for L can be selected based on the
experimental budget. This underlines the high flexibility and broad applicability of
our construction method. For example,

(i) if we replace L in Example 1 with SLHD(12, 3, 3) in Equation (4), we can obtain
EBLHD(36, 2 + 2 + 1). The design satisfies the following: for any given level
combination of branching factors, the corresponding design points involving
nested factors and shared factors can achieve 2 × 2 stratification in any two
dimensions.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

WEN et al. 7

T A B L E 3 MOA(18, 3361, 2).

a1 a2 a3 a4

0 0 0 0

0 1 2 1

0 2 1 2

0 1 1 3

0 2 0 4

0 0 2 5

1 1 1 0

1 2 0 1

1 0 2 2

1 2 2 3

1 0 1 4

1 1 0 5

2 2 2 0

2 0 1 1

2 1 0 2

2 0 0 3

2 1 2 4

2 2 1 5

(ii) if we replace L in Example 1 with any three columns of SLHD(24, 4, 3) in
Equation (5), we can obtain EBLHD(72, 2 + 2 + 1). The design satisfies the fol-
lowing: for any given level combination of branching factors, the corresponding
design points involving nested factors and shared factors can achieve 2 × 2 × 2
stratification in three dimensions.

Now, we show the general construction method with q s-level branching factors in
Algorithm 1. With this algorithm, a class of design EBLHD(N = s2n2, q + m + r) can be obtained,
as in Theorem 1. Its proof is found in Appendix A.1.

Theorem 1. Given A ∈ OA(n1 = s2, q + 1, s, 2) and L ∈ SLHD(sn2, k = m + r, s), the
design D obtained by Algorithm 1 is an EBLHD(N = s2n2, q + m + r).

Next, we discuss the generalized form of Theorem 1, which involves constructing an EBLHD
using an MOA with 𝜆s2 runs. Let us first illustrate the construction steps through an example,
followed by presenting the general construction algorithm.

Example 2. We assume there are three branching factors with levels from Z3 that
include 2, 1, and 1 nested factors. Additionally, the experiment involves two shared
factors. Here, s = 3, q = 3, m1 = 2, m2 = 1, m3 = 1, r = 2, m = 4, and k = 6.

We use MOA(18, 3361) in Table 3 and SLHD(108, 6, 6) in equation B1, generated by
Example 4, to construct an EBLHD(324, 3 + 4 + 2), as shown in Table 4.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8 WEN et al.

T A B L E 4 Design D = (D1,D2,D3) in Example 2.

D1 D2 D̃3 D3

0 0 0 P0 Q0 3Q01 + 0 3Q02 + 0
0 1 2 P1 Q1 3Q11 + 0 3Q12 + 1
0 2 1 P2 Q2 3Q21 + 0 3Q22 + 2
0 1 1 P3 Q3 3Q31 + 0 3Q32 + 1
0 2 0 P4 Q4 3Q41 + 0 3Q42 + 2
0 0 2 P5 Q5 3Q51 + 0 3Q52 + 0
1 1 1 P0 Q0 3Q01 + 1 3Q02 + 1
1 2 0 P1 Q1 3Q11 + 1 3Q12 + 2
1 0 2 P2 Q2 3Q21 + 1 3Q22 + 0
1 2 2 P3 Q3 3Q31 + 1 3Q32 + 2
1 0 1 P4 Q4 3Q41 + 1 3Q42 + 0
1 1 0 P5 Q5 3Q51 + 1 3Q52 + 1
2 2 2 P0 Q0 3Q01 + 2 3Q02 + 2
2 0 1 P1 Q1 3Q11 + 2 3Q12 + 0
2 1 0 P2 Q2 3Q21 + 2 3Q22 + 1
2 0 0 P3 Q3 3Q31 + 2 3Q32 + 0
2 1 2 P4 Q4 3Q41 + 2 3Q41 + 1
2 2 1 P5 Q5 3Q51 + 2 3Q52 + 2

Note: The bold i represents an 18-dimensional column vector.

Step 1. We suppose that A = (a1, a2, a3, a4) ∈ MOA(18, 3361, 2) as shown in Table 3.
For the branching factors, we define D1 as (A ⧵ a4)⊗ 118.

Step 2. The slices of L in equation B1 are expressed as L = (LT
0 ,…,LT

5)
T . Each slice is

divided into Li = (Pi,Qi), where Pi and Qi each contain 4 and 2 columns, respectively.
Step 3. For i = 0,…, 5, level i in a4 is replaced by slice Li to obtain the design

(D2, D̃3), where D2 and D̃3 contain 4 and 2 columns, respectively.
Step 4. We generate D3 = 3D̃3 + B ⊗ 118, where B = (a1, a2).
The final design D = (D1,D2,D3) is shown in Table 4. Here, Qi = (Qi1,Qi2), and

each Qij consists of one column. It can be verified that (1) under each level combina-
tion of all branching factors, the corresponding design points of (D2,D3) can achieve
stratification on 3 × 3 grids in any two dimensions; and (2) under each level of any
branching factor, the corresponding design points of (D2,D3) can achieve stratifica-
tion on 18 × 3 and 3 × 18 grids in any two dimensions. The stratification properties
will be discussed later.

Next, Algorithm 2 presents the general construction using an MOA with 𝜆s2 runs. Using
Algorithm 2, a type of design EBLHD(N = 𝜆s2n2, q + m + r) can be obtained, as shown in
Theorem 2.

Theorem 2. Given A ∈ MOA(n1 = 𝜆s2, sq(𝜆s)1, 2) and L ∈ SLHD(𝜆sn2, k = m +
r, 𝜆s), the design D derived from Algorithm 2 is an EBLHD(N = 𝜆s2n2, q + m + r).

Its proof is similar to Theorem 1, so we omit it here. Based on the structure of the design, it is
not difficult to obtain Proposition 2, which evidently holds.

Proposition 2. Suppose that L in Theorems 1 and 2 can achieve stratification on 𝛼 × 𝛽

and 𝛽 × 𝛼 grids in two dimensions. Then, the corresponding design points in (D2,D3)

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

WEN et al. 9

Algorithm 2. EBLHD(N = 𝜆s2n2, q + m + r)

Input A ∈ MOA(n1 = 𝜆s2, sq(𝜆s), 2), L ∈ SLHD(𝜆sn2, k = m + r, 𝜆s), B ∈ OA(n1, r, s, 1).
Step 1. Denote the columns of A by A = (a1,… , aq+1), where aq+1 is a 𝜆s-level column. For
branching factors, we define D1 = (A ⧵ aq+1)⊗ 1n2 .
Step 2. Express the slices of L as L = (LT

0 ,… ,LT
𝜆s−1)

T and divide each Li = (Pi,Qi), where Pi
and Qi contain m and r columns, respectively.
Step 3. For i = 0,… , 𝜆s − 1, replace the level i in aq+1 with slice Li to obtain (D2, D̃3), where
D2 and D̃3 consist of m and r columns, respectively.
Step 4. Construct D3 = sD̃3 + B ⊗ 1n2 , where B = (b1,… , br) and each pair column (bi, aq+1)
forms an OA(n1, s1(𝜆s)1, 2), i = 1,… , r. For convenience, we can directly select bi from
A ⧵ aq+1.

Output Design D = (D1,D2,D3).

under each level of each branching factor can achieve 𝛼 × 𝛽 and 𝛽 × 𝛼 stratification in
two dimensions.

The following Proposition 3 presents the properties of (D2,D3) in Theorems 1 and 2.

Proposition 3. Let (D2,D3) represent the design constructed in accordance with Theo-
rems 1 and 2. It follows that

𝜌max(D2) ≤ 𝜌max(P),

𝜌max(D3) ≤
s2(𝜆2s2n2

2 − 1)𝜌max(Q) + (s2 − 1)𝜌max(B)
𝜆2s4n2

2 − 1
,

𝜌max(D2,D3) ≤ s

√√√√𝜆2s2n2
2 − 1

𝜆2s4n2
2 − 1

𝜌max(P,Q), (2)

where P and Q represent the first m columns and the last r columns of L, respectively.
𝜆 = 1 corresponds to the case in Theorem 1.

Wang et al. (2022) highlighted the connections among three criteria: column orthogonality,
projection uniformity, and maximin distance. A design that exhibits excellent column orthogo-
nality generally tends to have superior overall space-filling properties.

Additionally, the construction methods proposed in this section rely on the existence of OAs
and MOAs. According to Hedayat et al. (1999),

i. OA(s2, s + 1, s, 2) exists for any prime power s (Theorem 3.20);
ii. OA(2s2, 2s + 1, s, 2) exists for any prime power s (Theorem 6.40);

iii. OA(𝜆s2, 𝜆
sd+1−1
sd−sd−1 + 1, s, 2) exists for any prime power p, s = pv, 𝜆 = pu, and d = ⌊u∕v⌋, where

u ≥ 0, v ≥ 1 are all integers (Theorem 6.28).

Building on previous work, Hedayat et al. (1999) reported extensive findings for non-prime
power scenarios, whereas He et al. (2017) synthesized a comprehensive overview of existing
orthogonal arrays.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

10 WEN et al.

3.2 Construction of stratification-enhanced SLHDs

The stratification properties of the proposed EBLHDs are based primarily on the stratification
properties of SLHDs. In this section, we study how to construct SLHDs with excellent space-filling
properties.

Theorem 3. Let G and H be LHD(n,m) and LHD(r,m), respectively. Then,

L = H ⊕c rG = (LT
0 , · · · ,LT

r−1) (3)

is an SLHD(rn,m, r), and

𝜌max(L) ≤
r2(n2 − 1)𝜌max(G) + (r2 − 1)𝜌max(H)

r2n2 − 1
,

𝜌max(Li) ≤ 𝜌max(G), i = 0,…, r − 1.

Remark 2.

(i) For the selection of G and H, we consider several excellent design classes, such
as maximin distance designs (Johnson et al., 1990; Wang et al., 2018), (strong)
OA-based LHDs (He & Tang, 2013; Tang, 1993), orthogonal-maximin LHDs
(Joseph & Hung, 2008), maximum projection designs (Joseph et al., 2015), and
uniform projection designs (Sun et al., 2019).

(ii) To enhance the space-filling properties of L in Equation (3), one can generate
Li−1 = hi ⊕c rGi by r different Gi ∈ LHD(n,m) for 1 ≤ i ≤ r, where hi is the ith
row of H.

Example 3. We now generate the SLHD(12, 3, 3) and SLHD(24, 4, 3) mentioned in
Remark 2.

(i) Taking G1, G2, and G3 as three OA(4, 3, 2, 2)-based LHD(4, 3)s and H as an
LHD(3, 3) in Equation (4), Theorem 3 produces an SLHD(12, 3, 3) as in Equation
(4), where OA(4, 3, 2, 2) is taken from http://neilsloane.com/oadir/oa.4.3.2.2.txt.

H =
⎛⎜⎜⎜⎝
0 1 2
2 0 1
1 2 0

⎞⎟⎟⎟⎠ , L =
⎛⎜⎜⎜⎝

3 0 6 9
1 10 4 7
5 8 11 2

2 5 8 11
0 9 3 6
1 7 10 4

1 4 10 7
2 11 5 8
3 6 9 0

⎞⎟⎟⎟⎠
T

. (4)

(ii) Similarly, taking three LHD(8, 4)s based on OA(8, 4, 2, 3) as Gi(1 ≤ i ≤ 3) and
H as LHD(3, 4) in Equation (5), Theorem 3 generates an SLHD(24, 4, 3) as
Equation (5), where OA(8, 4, 2, 3) is taken from http://neilsloane.com/oadir/oa
.8.4.2.3.txt.

H =
⎛⎜⎜⎜⎝
1 0 2 0
0 1 1 2
2 2 0 1

⎞⎟⎟⎟⎠ ,

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://neilsloane.com/oadir/oa.4.3.2.2.txt
http://neilsloane.com/oadir/oa.4.3.2.2.txt
http://neilsloane.com/oadir/oa.8.4.2.3.txt
http://neilsloane.com/oadir/oa.8.4.2.3.txt
http://neilsloane.com/oadir/oa.8.4.2.3.txt

WEN et al. 11

Algorithm 3. SLHD(𝜆sn2, k, 𝜆s)

Input A = (AT
0 ,… ,AT

𝜆s−1)
T ∈ CROA(n2 = 𝜆s2, k, s, 2), Ai ∈ OA(s, k, s, 1), C,G ∈ LHD(𝜆s, k).

Step 1. Define E = (ET
0 ,… ,ET

𝜆s−1)
T = C ⊕c 𝜆sA, where each Ei contains n2 rows.

Step 2. Rearrange the rows of E to form L̃ = (L̃T
0 ,… , L̃T

𝜆s−1)
T . Specially, select the 1-st s rows

from E0, the 2nd s rows from E1,… , the 𝜆sth s rows from E𝜆s−1;the 2nd s rows from E0, the 3-rd
s rows from E1, … , the 1st s rows from E𝜆s−1, and so on, until all rows of E are taken through.
Step 3. Generate L = (LT

0 ,… ,LT
𝜆s−1)

T = 𝜆sL̃ + G ⊗ 1n2 .
Output Design L = (LT

0 ,… ,LT
𝜆s−1)

T .

L =

⎛⎜⎜⎜⎜⎜⎝

1 10 4 7 13 19 22 16
6 9 18 12 3 0 21 15
5 20 2 23 11 14 8 17
0 21 18 6 15 3 9 12

3 9 0 6 12 21 15 18
4 1 13 19 7 10 22 16
1 16 10 13 4 22 7 19
2 23 20 8 14 5 11 17

5 11 8 2 20 17 23 14
2 8 20 23 5 11 17 14
6 12 0 18 9 21 3 15
1 13 22 10 16 7 4 19

⎞⎟⎟⎟⎟⎟⎠

T

. (5)

The SLHDs obtained from Algorithm 3 exhibit excellent low-dimensional stratification prop-
erties, which we summarize in Theorem 4. Its proof is found in Appendix A.4.

Theorem 4. Given A ∈ CROA(n2 = 𝜆s2, k, s, 2), the design L from Algorithm 3 satisfies

(i) L is an SLHD(𝜆2s3, k, 𝜆s).
(ii) In any two dimensions, each slice of L can achieve stratification on s × s grids, and

the whole L can achieve stratification on s × 𝜆s2 and 𝜆s2 × s grids.
(iii)

𝜌max(L) ≤
𝜆2s2 − 1
𝜆4s6 − 1

(
𝜆2s2𝜌max(C) + 𝜌max(G)

)
.

Remark 3.

(i) Theorem 3 in He et al. (2017) provided a summary of the existence of CROAs,
which can be used as A in Algorithm 3.

(ii) The LHDs C and G can be selected from the design classes mentioned in
Remark 2. Additionally, they can be chosen from LHD(𝜆s, 𝜆s) provided in Wang
et al. (2018) and tab. 2 in Yuan et al. (2025). As an alternative, the R package
SLHD in Ba et al. (2015) can also be utilized.

(iii) Using the SLHDs from Algorithm 3 for Algorithms 1 and 2, the resulting EBL-
HDs have excellent stratification properties. Some of the construction results
are listed in Table C1–C3.

Example 4. Here, we generate the SLHD(27, 3, 3) used in Example 1 and
SLHD(108, 6, 6) used in Example 2, respectively.

(i) Considering A ∈ CROA(9, 3, 3, 2) and C,G ∈ LHD(3, 3) below, Algorithm 3 can
generate SLHD(27, 3, 3) in Equation (1).

A =
⎛⎜⎜⎜⎝

0 1 2
0 1 2
0 2 1

0 1 2
1 2 0
1 0 2

0 1 2
2 0 1
2 1 0

⎞⎟⎟⎟⎠
T

,C =
⎛⎜⎜⎜⎝
0 1 0
2 0 1
1 2 2

⎞⎟⎟⎟⎠ ,G =
⎛⎜⎜⎜⎝
0 1 0
2 2 1
1 0 2

⎞⎟⎟⎟⎠ . (6)

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

12 WEN et al.

T A B L E 5 Properties of different SLHDs.

Designs Generation 𝝆ave(↓) 𝝆max(↓) d(↑) 𝝓p(↓) Stratification

SLHD(27, 3, 3) Theorem 4 0.0549 0.0549 8 0.1451 3 × 9,9 × 3

MaxAbsCor 0.0914 0.1477 3 0.3336 –

phi_p 0.2867 0.4853 4 0.2618 –

AvgAbsCor 0.0840 0.1843 3 0.3491 –

SLHD(64, 4, 4) Theorem 4 0.0192 0.0491 16 0.0691 4 × 16,16 × 4

MaxAbsCor 0.1236 0.1821 4 0.2500 –

phi_p 0.1741 0.4063 9 0.1111 –

AvgAbsCor 0.0930 0.3336 7 0.1496 –

SLHD(108, 6, 6) Theorem 4 0.0383 0.1018 52 0.0214 3 × 18,18 × 3

MaxAbsCor 0.1057 0.1979 19 0.0526 –

phi_p 0.1110 0.3469 36 0.0278 –

AvgAbsCor 0.0890 0.2883 21 0.0477 –

SLHD(125, 5, 5) Theorem 4 0.0160 0.0353 31 0.0368 5 × 25,25 × 5

MaxAbsCor 0.0928 0.1717 15 0.0667 –

phi_p 0.1082 0.2615 21 0.0476 –

AvgAbsCor 0.0873 0.2521 11 0.0909 –

Note: The bolded values represent the optimal values in four kinds of SLHDs. The “↓” means lower is better, and the “↑” means
higher is better.

(ii) Selecting A ∈ CROA(18, 6, 3, 2) and C,G ∈ LHD(6, 6) as follows, Algorithm 3
generates an SLHD(108, 6, 6) used in Example 2. The generated SLHD(108, 6, 6)
is listed in Equation (B1).

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2
0 1 2
0 1 2
0 1 2
0 1 2
0 1 2

0 1 2
0 1 2
1 2 0
2 0 1
1 2 0
2 0 1

0 1 2
1 2 0
0 1 2
2 0 1
2 0 1
1 2 0

0 1 2
2 0 1
2 0 1
0 1 2
1 2 0
1 2 0

0 1 2
1 2 0
2 0 1
1 2 0
0 1 2
2 0 1

0 1 2
2 0 1
1 2 0
1 2 0
2 0 1
0 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

,

C = G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 4 5
1 3 5 4 2 0
2 5 3 0 1 4
3 4 0 2 5 1
4 2 1 5 0 3
5 0 4 1 3 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

To display the robustness of the space-filling properties of these SLHDs, we generated 100
SLHDs in different ways and show the properties of the worst SLHDs in Table 5. These methods
included “MaxAbsCor”, “phi_p”, and “AvgAbsCor” in the R package SLHD and the method in

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

WEN et al. 13

Algorithm 4. EBLHD(N = n1n2, q + m + r)

Input A ∈ MOA(n1, s1 · · · sq, 2), L = (L1,… ,Lq,Lq+1) ∈ LHD(n2, k = m + r), G ∈ LHD(n1, r), B =
(B1,… ,Bq), where Li and Lq+1 have mi and r columns, respectively, Bi ∈ OA(n1,mi,

n1
si
, 1), each

pair column (ai, b) ∈ MOA
(

n1, si ×
n1
si
, 2
)

for ai ∈ A and ∀b ∈ Bi, 1 ≤ i ≤ q.
Step 1. Define D1 = A ⊗ 1n2 for branching factors.
Step 2. Define D2 = (D21,… ,D2q), where D2i = Bi ⊕c

n1
si

Li for 1 ≤ i ≤ q.
Step 3. Generate D3 = G ⊕c n1Lq+1.

Output Design D = (D1,D2,D3).

Algorithm 3 (see Appendix B.2 for details and involved designs). The space-filling criteria used
for comparison include the average absolute correlation (𝜌ave), maximum absolute correlation
(𝜌max), L1 distance (d), the maximin distance criterion in Morris and Mitchell (1995) (𝜙p, p = 15)
and stratification properties. Table 5 shows that the proposed method is the most robust under
all criteria.

In addition, the literature provides several construction methods for SLHDs. Based on
the maximin criterion, Ba et al. (2015) presented an effective search algorithm for SLHDs
that utilizes simulated annealing. Sun et al. (2014) generated SLHDs from sliced OAs. All of
these SLHDs can be effectively used to construct EBLHDs that exhibit superior space-filling
properties.

4 CONSTRUCTION OF EBLHDS WITH MIXED-LEVEL
BRANCHING FACTORS

Algorithm 4 provides a method for constructing EBLHDs under mixed-level branching factors.
The properties of the resulting design are summarized in Theorem 5.

Theorem 5. The design D constructed by Algorithm 4 is an EBLHD(n1n2, q + m + r)
satisfying

(i) For i ≠ j ∈ 1,…, q,

𝜌max(D3) ≤
n2

1(n
2
2 − 1)𝜌max(Lq+1) + (n2

1 − 1)𝜌max(G)
n2

1n2
2 − 1

,

𝜌max(D2i) ≤
n2

1(n
2
2 − 1)𝜌max(Li) + (n2

1 − s2
i)𝜌max(Bi)

n2
1n2

2 − s2
i

,

𝜌max(D2i,D2j) ≤
n2

1(n
2
2 − 1)𝜌max(Li,Lj) +

√
(n2

1 − s2
i)(n

2
1 − s2

j)𝜌max(Bi,Bj)√
(n2

1n2
2 − s2

i)(n
2
1n2

2 − s2
j)

,

𝜌max(D2i,D3) ≤
n2

1(n
2
2 − 1)𝜌max(Li,Lq+1) +

√
(n2

1 − s2
i)(n

2
1 − 1)𝜌max(Bi,G)√

(n2
1n2

2 − s2
i)(n

2
1n2

2 − 1)
.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

14 WEN et al.

(ii) For each level combination of all branching factors, the corresponding design of
(D2,D3) has the same low-dimensional stratification properties as L.

To improve the uniformity of the final EBLHD, L can be generated in the design class proposed
in Remark 2 and Remark 3. In addition, the method in Algorithm3 relies on the MOA. Regarding
to its existence, we have summarized as follows.

(i) For orthogonal arrays with run size fewer than 100, some existing designs can be found in
http://neilsloane.com/oadir/, as proposed by Sloane (2007); Some new orthogonal arrays
with run sizes 72 and 96 can refer to Zhang (2007).

(ii) Schoen et al. (2010) specified an algorithm and obtained some MOAs for strength t = 2, run
size n ≤ 28, t = 3, n ≤ 64, and t = 4, n ≤ 168. Complete series of non-isomorphic OAs can
be found directly at http://www.pietereendebak.nl/oapackage/series.html.

(iii) For algebraic construction methods, Chen and Lei (2017) constructed some MOAs of t =
3 by using difference matrices and Hadamard matrices; Jiang and Yin (2013) established
a general “expansive replacement method” and produced some series of MOAs of t = 3;
Pang et al. (2015) constructed many new MOAs of n = 108 and n = 144; Pang et al. (2021)
proposed new methods for MOAs with high strength by using lower strength orthogonal
partitions of spaces and OAs.

Example 5. We suppose there are three branching factors z1, z2, and z3 with levels
from Z2, Z2, and Z3, respectively. One factor is nested within each level of z1 and z2,
and two factors are nested within each level of z3, which are denoted by vz1

1 , vz2
1 , vz3

1 ,
and vz3

2 , respectively. Additionally, there is one shared factor, x1. In this case, q = 3,
s1 = s2 = 2, s3 = 3, n1 = 12, m1 = m2 = 1, m3 = 2, m = 4, r = 1, and k = 5.

We consider A ∈ MOA(12, 223, 2) listed in Table 6, L ∈ LHD(8, 5), B, and G as fol-
lows. L1, L2 and L3 contain 1, 1, and 2 columns, respectively, similarly for B1, B2, and
B3. L4 has 1 column. Next, we construct an EBLHD(96, 3 + 4 + 1) as shown in Table 6.

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 4 5 6 7
3 2 6 7 0 1 5 4
1 7 3 5 2 4 0 6
2 4 7 1 6 0 3 5
2 5 0 7 4 3 6 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

T

,B =

⎛⎜⎜⎜⎜⎜⎝

0 2 4 1 3 5 1 3 5 0 2 4
0 2 4 1 3 5 3 5 1 4 0 2
0 1 2 1 2 3 2 3 0 3 0 1
3 2 1 2 1 0 1 0 3 0 3 2

⎞⎟⎟⎟⎟⎟⎠

T

,

G =
(

0 4 8 3 7 11 6 10 2 9 1 5
)T

.

Step 1. We define D1 = A ⊗ 18.
Step 2. We define D2 = (D21,D22,D23), where D2i = Bi ⊕c

12
si

Li, 1 ≤ i ≤ 3.
Step 3. D3 = G ⊕c 12L4 is generated.
The design D in Table 6 is an EBLHD(96, 3 + 4 + 1). It is easy to find that D2 and

D3 corresponding to each level combination in D1 can achieve 2 × 2 stratification in
two dimensions. Because the first four columns of L after the level collapse form an
OA(8, 4, 2, 3), the four columns in D2 corresponding to each level combination in D1
can also achieve 2 × 2 × 2 stratification in any three dimensions. In addition, most of

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://neilsloane.com/oadir/
http://neilsloane.com/oadir/
http://www.pietereendebak.nl/oapackage/series.html
http://www.pietereendebak.nl/oapackage/series.html

WEN et al. 15

T A B L E 6 The structure of design D = (D1,D2,D3), D1 = A ⊗ 18.

A D2 D3

a1 a2 a3 vz1
1 vz2

1 vz3
1 vz3

2 x1

0 0 0 0 ⊕ 6L1 0 ⊕ 6L2 0 ⊕ 4L31 3 ⊕ 4L32 0 ⊕ 12L4

0 0 1 2 ⊕ 6L1 2 ⊕ 6L2 1 ⊕ 4L31 2 ⊕ 4L32 4 ⊕ 12L4

0 0 2 4 ⊕ 6L1 4 ⊕ 6L2 2 ⊕ 4L31 1 ⊕ 4L32 8 ⊕ 12L4

0 1 0 1 ⊕ 6L1 1 ⊕ 6L2 1 ⊕ 4L31 2 ⊕ 4L32 3 ⊕ 12L4

0 1 1 3 ⊕ 6L1 3 ⊕ 6L2 2 ⊕ 4L31 1 ⊕ 4L32 7 ⊕ 12L4

0 1 2 5 ⊕ 6L1 5 ⊕ 6L2 3 ⊕ 4L31 0 ⊕ 4L32 11 ⊕ 12L4

1 0 0 3 ⊕ 6L1 3 ⊕ 6L2 2 ⊕ 4L31 1 ⊕ 4L32 6 ⊕ 12L4

1 0 1 5 ⊕ 6L1 5 ⊕ 6L2 3 ⊕ 4L31 0 ⊕ 4L32 10 ⊕ 12L4

1 0 2 1 ⊕ 6L1 1 ⊕ 6L2 0 ⊕ 4L31 3 ⊕ 4L32 2 ⊕ 12L4

1 1 0 4 ⊕ 6L1 4 ⊕ 6L2 3 ⊕ 4L31 0 ⊕ 4L32 9 ⊕ 12L4

1 1 1 0 ⊕ 6L1 0 ⊕ 6L2 0 ⊕ 4L31 3 ⊕ 4L32 1 ⊕ 12L4

1 1 2 2 ⊕ 6L1 2 ⊕ 6L2 1 ⊕ 4L31 2 ⊕ 4L32 5 ⊕ 12L4

the column correlation coefficients in L are zero. Therefore, the design D performs
well in terms of the correlation property.

Remark 4. In fact, the number of nested factors may not be the same involved at
different levels of different branching factors, or even at different levels of the same
branching factor. In this scenario, we recommend constructing EBLHDs based on the
maximum number of nested factors, and then deleting the redundant parts of the
design to meet the actual requirements. This strategy is exactly what we adopted in
the practical application of Section 6.

5 SIMULATION

In this section, we conducted two simulations to study the space-filling properties and the model
estimation performance of our proposed designs.

The first simulation was performed to explore their space-filling properties. To evaluate their
distance properties, we calculated the minimum absolute L1-distance under each level combina-
tion of branching factors and determined the minimum value among all level combinations of
branching factors, denoted by d. The larger the distance is, the better the design. To clarify the
column correlations of designs, we selected criterion 𝜌2 in Hung et al. (2009) for judgment, for
which a lower value is better. We generated 100 EBLHDs and calculated the average and the worst
values of these criteria, denoted by dave, dmin, 𝜌2

ave, and 𝜌2
max, respectively. For comparison, we gen-

erated 100 random BLHDs. The simulation results are shown in Table 7 (details for generating
these designs are provided in Appendix B.3). The EBLHDs performed significantly better than
random BLHDs under both space-filling criteria.

The second simulation studied the model estimation performance under EBLHDs based on
the mean square error (MSE) of the model parameter estimation. The models considered here are

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

16 WEN et al.

T A B L E 7 Simulation results on the space-filling properties of EBLHDs.

d(↑) 𝝆2(↓)

(N,q + m + r)
Type
of design dave dmin 𝝆2

ave 𝝆2
max

(40, 1 + 2 + 2) BLHD 0.9550 0.6000 0.0256 0.0768

EBLHD 1.3500(42%) 1.0000(67%) 0.0076(70%) 0.0181(76%)

(64, 1 + 4 + 4) BLHD 2.1022 1.1875 0.0147 0.0248

EBLHD 2.9050(38%) 2.1250(79%) 0.0065(56%) 0.0095(62%)

(90, 1 + 3 + 4) BLHD 1.5473 0.9111 0.0109 0.0196

EBLHD 2.2200(43%) 1.5556(71%) 0.0023(79%) 0.0042(79%)

(324, 3 + 4 + 2) BLHD 0.8182 0.3272 0.0027 0.0054

EBLHD 1.2800(56%) 0.8889(172%) 0.0012(56%) 0.0024(56%)

Note: The values in parentheses are the proportion of the improvement of criterion value. The “↓” means lower is better,
and the “↑” means higher is better.

shown in Equation (8) (see Goos and Jones (2019) for the complete model):

Y = 𝛽0 +
𝜅∑

k=1
𝛽kzk +

r∑
j=1

𝛽(s)jx(s)j +
𝜅∑

k=1
zk

(m∑
l=1

𝛽(n)klx(n)kl

)
+

r−1∑
j=1

r∑
j′=j+1

𝛽(s)jj′x(s)jx(s)j′

+
𝜅∑

k=1
zk

(m−1∑
l=1

m∑
l′=l+1

𝛽(n)kll′x(n)klx(n)kl′

)
+ 𝜖, (8)

where (i) 𝛽0 is an intercept term. (ii) zk is the indicator variable corresponding to the kth nesting
relationship. If this indicator variable takes the value 1, then the corresponding nested factors,
x(n)k1,…, x(n)km, appear in the model. If it takes the value 0, then the corresponding nested factors
do not appear in the model. To avoid collinearity, we drop one of the 𝜅 associated linear indica-
tor variable terms from the model. (iii) 𝛽(n)kl and 𝛽(n)kll′ represent the main effects and two-factor
interaction effects of the nested factors, respectively. (iv) x(s)j denotes the level of the jth shared
factor. 𝛽(s)j and 𝛽(s)jj′ represent the main effects and two-factor interaction effects of the shared
factors, respectively. (v) 𝜖 ∼ N(0, 0.01) is the error term. The true regression coefficients are ran-
domly generated from (−1, 1) and all the designs are scaled to (−1, 1). We generated 100 EBLHDs
and random BLHDs, and calculated the MSEs of regression coefficient estimation. Table 8 shows
the mean and maximum values of these 100 MSEs (details for generating these designs are pro-
vided in Appendix B.3). The MSEs under the EBLHDs are much smaller than those under the
random BLHDs.

Based on the two simulation studies, we conclude that the EBLHDs not only possess better
space-filling properties but also perform well in model parameter estimation.

6 APPLYING EBLHDS FOR THE ALGORITHM
CONFIGURATION PROBLEM

With the continuous increase in data volume and growing computational demands, the perfor-
mance of algorithms has become increasingly crucial. Many high-performance algorithms have

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

WEN et al. 17

T A B L E 8 Simulations results on the estimation of model parameters of EBLHDs.

MSE

(N,q + m + r) Type of design MSEave MSEmax

(40, 1 + 2 + 2) BLHD 0.0093 0.5904

EBLHD 0.0071(24%) 0.2890(51%)

(64, 1 + 4 + 4) BLHD 0.0226 1.3504

EBLHD 0.0130(42%) 0.4349(68%)

(90, 1 + 3 + 4) BLHD 0.0053 0.2786

EBLHD 0.0037(30%) 0.1221(56%)

(324, 3 + 4 + 2) BLHD 0.0167 1.0695

EBLHD 0.0092(45%) 0.5309(50%)

Note: The values in parentheses are the proportion of the improvement of MSE value.

parameters whose settings control important aspects of their behavior. The process of determin-
ing the optimal parameter settings to achieve the best performance is known as the algorithm
configuration problem. Traditionally, algorithm configuration has been a laborious and man-
ual task that requires a significant amount of effort (Adenso-Diaz & Laguna, 2006). To simplify
this process, leveraging automated configuration methods is recommended (Bartz-Beielstein
& Preuss, 2006; Bezerra et al., 2016; Birattari & Kacprzyk, 2009; Hoos, 2012). Notable among
these methods is the Irace approach, which initializes configurations through uniform sampling
within parameter domains, facilitated by the R package irace. Uniform sampling is efficient,
but it may lead to suboptimal exploration, resulting in increased computational burdens and
local optimization. Grid search is another widely used strategy for hyper-parameter optimization
(Bergstra & Bengio, 2012). It forms a grid of hyper-parameter settings and assesses the perfor-
mance of each combination using cross-validation, ultimately selecting the best-performing set
of hyper-parameters. Nonetheless, grid search is encumbered by the curse of dimensionality. In
high-dimensional spaces, this drawback renders the method notably inefficient and computation-
ally costly, as the number of hyper-parameter combinations to be explored grows exponentially
with the increase in the dimensionality of the hyperparameter space. Advanced techniques such
as fractional factorial designs and LHDs offer more balanced parameter space exploration but
may be challenging in scenarios involving mixed-variable and conditional parameters.

In algorithm configuration, the parameters that depend on specific values of other parame-
ters are regarded as nested factors, and the parameters within which other parameters are nested
are branching factors. All remaining parameters are categorized as shared factors. For example,
Tables 9 and 10 provide the parameter types and relationships for two optimization algorithms.
To address the challenge of finding the optimal algorithm configuration within a complex param-
eter space, Wessing and López-Ibáñez (2019) introduced an enhanced initialization method that
utilizes BLHDs for computer experiments involving branching and nested factors. This method
optimizes a weighted criterion by combining a general energy criterion with a correlation cri-
terion using an algorithm to achieve an optimal BLHD. However, this process increases the
computational load and may result in convergence to local optima in practical scenarios.

The EBLHDs proposed in this article are constructed through algebraic methods and have
good space-filling properties, which can significantly reduce the computational burden when
generating EBLHDs. In this section, we apply EBLHDs to two specific algorithm configuration

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

18 WEN et al.

T A B L E 9 Parameters in optim algorithm configuration scenarios.

Branching factor Nested factors Shared factors

Method Simulated
Annealing
Method

tmax i (1, 5000)
temp r (0, 100)

reltol r (−12,−3)∗ maxit r (1, 3.024)∗

Nelder-Mead
Method

alpha r (0.5, 1.5)
beta r (0.1, 0.9)
gamma r (1.1, 3.0)

Note: The “r” and “i” are parameter type: real and integer. Rows with a ∗ indicate that a log 10-transformation is applied.

T A B L E 10 Nested relationship in ACOQAP algorithm.

Branching factors Nested factors

Algorithm MMAS m, 𝛼, 𝛽, 𝜌, q0, slen

AS m, 𝛼, 𝛽, 𝜌, q0, slen

EAS m, 𝛼, 𝜌, q0,melite

RAS m, 𝛼, 𝜌, q0, rasrank

BWAS m, 𝛼, 𝜌, q0

Restart Never None

Branch-factor resbf, resit

Distance resdist, resit

Always resit

PH-limits Yes pdec

No None

problems. The first scenario is an optimization algorithm in the R standard library (optim). The
second scenario is the ant colony optimization for the quadratic assignment problem (ACOQAP)
(López-Ibáñez et al., 2018). We compare the optimal configurations obtained using EBLHDs
with those derived using the BLHD method proposed in López-Ibáñez et al. (2018), Irace, grid
search and the default method. Here, we use the package iracelhs (https://github.com/search?q
=iracelhs/type=repositories) to implement the BLHD method. The default method refers to solv-
ing the optimization problem using the default parameter settings of the algorithm. Notably, in
these two algorithms, the numbers of nested factors corresponding to different levels of branch-
ing factors are not the same. Therefore, when using EBLHDs for algorithm configuration, we
construct nested factor designs based on the maximum number of nested factors at each level of
branching factor, as stated in Remark 4.

6.1 Applying EBLHDs for Optim

We first examine a simpler scenario, referred to as “optim”, in which optimization algorithms from
the R standard library, specifically the Nelder–Mead and simulated annealing methods, are used

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/search?q=iracelhs/type=repositories
https://github.com/search?q=iracelhs/type=repositories
https://github.com/search?q=iracelhs/type=repositories

WEN et al. 19

to minimize any function. In this case, there is q = 1 branching factor with 2 levels. Because the
number of nested factors corresponding to different levels of branching factors is either 2 or 3, we
choose m = 3 when constructing the design. There are also r = 2 shared factors. The parameter
space associated with the optim algorithm is shown in Table 9.

By utilizing an OA A ∈ OA(4, 2, 2, 2), an SLHD L = (LT
0 ,LT

1)
T ∈ SLHD(50, 5, 2) with each slice

having an equal number of runs, and a necessary matrix B ∈ OA(4, 2, 2, 1), we construct an
EBLHD(100, 1 + 3 + 2) by Algorithm 1 and use it to generate a series of parameter configuration
sets. The A, L, and B used in this subsection can be found in Table B4 of Appendix B.4. For the
Irace method, we randomly generate 100 configurations within the parameter space. And the
default method of optim is Nelder-Mead Method. We conduct a comparative analysis of the best
configuration identified by the EBLHD method against BLHDs, Irace, grid search and the default
method across the following family of 10 functions:

f (x) = 𝜆f1(x) + (1 − 𝜆)f2(x),

where 𝜆 follows a normal distribution with a mean of 0.9 and a standard deviation of 0.02.
f1 and f2 are the well-known Rastrigin and Rosenbrock benchmark functions, respectively
(taken from the cmaes package in R). In this scenario, different functions are given by dif-
ferent values of 𝜆. This comparison focuses on optimal configurations that seek to minimize
the values of these 10 functions, all of which have theoretical minimum values of 0. Figure 1
presents a boxplot of the minimum values of these 10 functions obtained using the parameter

�

�

�

0

1

2

3

BLHD Default EBLHD GridSearch Irace

method

BLHD

Default

EBLHD

GridSearch

Irace

F I G U R E 1 Boxplot for measuring the quality of the best configuration obtained with EBLHDs, BLHDs,
Irace, and grid search, along with the default parametrization of optim function (a lower value is better).

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

20 WEN et al.

configurations discovered by the five methods. The results clearly demonstrate that EBLHDs
yield an outstanding configuration.

6.2 Applying EBLHDs for ACOQAP

In this subsection, we apply EBLHDs to find the best configuration for a complex algorithm,
namely, “ACOQAP”. This scenario uses a component-wise framework of diverse ant colony opti-
mization (ACO) algorithms (López-Ibáñez et al., 2018) for instances of the quadratic assignment
problem (QAP). The QAP can be outlined as follows: given n locations and n facilities, the dis-
tances between pairs of locations are denoted by an n × n distance matrix D =

(
dij
)

n×n, and
the transportation flows between pairs of facilities are also represented by an n × n flow matrix
F = (fij)n×n. The aim is to assign the n facilities to the n locations in a manner that minimizes the
overall cost, which can be formulated as

min
𝜋∈

cost = min
𝜋∈

n∑
i=1

n∑
j=1

dij ⋅ f𝜋i𝜋j ,

where 𝜋i ∈ 𝜋, i = 1,…,n, and 𝜋 is a uniform arrangement on the set {1,…,n}.
We focus on a specific quadratic assignment problem provided in Heris (2015). We choose

n = 7 positions, denoted by

{(69, 9), (80, 81), (63, 43), (34, 89), (54, 30), (36, 95), (53, 97)},

along with the corresponding 7 × 7 flow matrix F:

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 6 6 3 5 5 5
6 0 6 4 −10 3 6
6 6 0 4 5 8 6
3 4 4 0 4 4 100
5 −10 5 4 0 3 4
5 3 8 4 3 0 4
5 6 6 100 4 4 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The distance matrix D is calculated using the Euclidean distance.
When using the ACO algorithm to address this QAP, the parameter space encompasses

3 branching parameters and 11 nested parameters. A comprehensive list of these parameters
is available in Table B5 of Appendix B.4, and the specific nesting relationships among these
parameters are delineated in Table 10.

In this scenario, the number of branching parameters is q = 3, with s1 = 5, s2 = 4, and s3 = 2
levels each. Although the number of nested factors varies across branching factor levels, we adopt
m1 = 6, m2 = 2, and m3 = 1 nested parameters under these three branching parameters, yielding
a total of m = 9 nested parameters. To use the EBLHDs proposed in this article, we sample 160
configurations (equal to the number of design points). The following inputs are needed: a mixed
orthogonal array A ∈ MOA(40, 514121, 2); an LHD L = (L1,L2,L3), where L1 ∈ LHD(4, 6), L2 ∈

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

WEN et al. 21

T A B L E 11 Default and optimal ACO configurations identified by EBLHDs, BLHDs, Irace and grid search.

Algorithm m 𝜶 𝜷 𝝆 q0 slen Restart resit

EBLHDs MMAS 311 1.149 6.971 0.904 0.543 170 Distance
resdist = 1.822

40

BLHDs AS 10 1.0 4.662 0.95 0.0 97 Branch-factor
resbf = 1.412

60

Irace MMAS 6 0.324 3.156 0.29 0.062 153 Distance
resdist = 0.051

22

Grid search AS 100 0.1495 2.135 0.5412 0.0 210 Distance
resdist = 1.822

38

Default MMAS 25 1.0 2.0 0.2 0.0 250 Branch-factor
resbf = 1.0

250

LHD(4, 2), and L3 ∈ LHD(4, 1); and a balanced design B = (B1,B2,B3), with B1 ∈ OA(40, 86, 1),
B2 ∈ OA(40, 102, 1), and B3 ∈ OA(40, 201, 1). Based on A, L, and B, we use Algorithm 4 to generate
an EBLHD(160, 3 + 9 + 0), which represents a set of parameter configurations within the specified
parameter space. The A,B, and L used in this case are listed in Table B6 of Appendix B.4. In
addition, for the BLHD method, we implement an energy criterion to search for the optimal BLHD
containing 160 runs and then use this design to find the optimal configuration of parameters. To
ensure a fair comparison, we generate 160 configurations in the parameter space for the Irace
method and grid search method, and this procedure is repeated 50 times each to determine the
optimal configuration. The final optimal configurations obtained through the EBLHDs, BLHDs,
Irace, grid search, and default method are outlined in Table 11.

Figure 2 compares the results from the four tuned configurations (obtained using EBLHDs,
BLHDs, grid search, and Irace) with those from the default configuration on the aforementioned
QAP problem. Each optimal configuration is run once on this QAP problem for up to 100 iter-
ations, with the cost computed at each step. From the figure, the following conclusions can be
drawn: (i) The convergence of the EBLHDs method is the fastest among the five methods. (ii) The
final cost achieved by the configuration found by EBLHDs and grid search method is significantly
lower than those found by BLHDs, Irace, and the default approach.

7 CONCLUSIONS

This article focuses on experiments with branching factors and nested factors. Several meth-
ods are proposed for constructing EBLHDs under equal-level branching factors and mixed-level
branching factors. For equal-level branching factors, two frameworks are presented, along with
the constructions of the corresponding SLHDs. Considering that branching factors may have dif-
ferent number of levels in practice, we also constructed EBLHDs with mixed-level branching
factors. The resulting EBLHDs exhibited good stratification properties and satisfactory correla-
tion performance. A significant advantage of our method is that it divides the EBLHD into two
core components: the OA and the SLHD. The OA serves as the overall framework, arranging the
branching factors, whereas the SLHD is specifically used to adjust the stratification to meet var-
ious specific needs. The proposed method enables experimenters to easily obtain EBLHDs with
diverse stratification structures, thereby enabling flexible adaptation to various experimental and

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

22 WEN et al.

0 10 20 30 40 50 60 70 80 90 100

Iteration

2000

3000

4000

5000

6000

7000

8000

9000

B
es

t C
os

t
EBLHDs
Default
Irace
BLHDs
GridSearch

F I G U R E 2 The cost as a function of the number of iterations across four configurations discovered by
EBLHDs, BLHDs, Irace, and grid search, along with the default configuration (a lower value is better).

research requirements. Additionally, we propose applying these designs to the initialization phase
of automatic algorithm configuration, thereby enhancing both efficiency and effectiveness.

There are several directions worthy of further study. One such direction involves the construc-
tion of EBLHDs with additional desirable properties, encompassing maximin distance EBLHDs,
uniform projection EBLHDs, etc. Moreover, when the experimental budget varies across differ-
ent levels of branching factors, leading to disparities in run size, the following question arises:
How can we devise such designs that possess optimal properties? This inquiry holds significant
research value. In addition, the application of EBLHDs to Bayesian optimization is also a valuable
research topic.

FUNDING INFORMATION
This research was supported by the National Natural Science Foundation of China (12371259
and 12401324) and the Fundamental Research Funds for the Central Universities, China
(2412023YQ003). The first two authors contributed equally to this work.

ORCID
Fasheng Sun https://orcid.org/0000-0003-2410-4018

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-2410-4018
https://orcid.org/0000-0003-2410-4018

WEN et al. 23

REFERENCES
Adenso-Diaz, B., & Laguna, M. (2006). Fine-tuning of algorithms using fractional experimental designs and local

search. Operations Research, 54(1), 99–114.
Ba, S., Myers, W. R., & Brenneman, W. A. (2015). Optimal sliced latin hypercube designs. Technometrics, 57(4),

479–487.
Bartz-Beielstein, T., & Preuss, M. (2006). Considerations of budget allocation for sequential parameter optimization

(spo). In Workshop on empirical methods for the analysis of algorithms, proceedings (pp. 35–40). Citeseer.
Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning

Research, 13(10), 281–305.
Bezerra, L. C. T., López-Ibánez, M., & Stützle, T. (2016). Automatic component-wise design of multiobjective

evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 20(3), 403–417.
Birattari, M., & Kacprzyk, J. (2009). Tuning metaheuristics: A machine learning perspective. Springer.
Chen, G., & Lei, J. (2017). Constructions of mixed orthogonal arrays of strength three. Science China Mathematics,

47(4), 545–564.
Deng, X., Hung, Y., & Lin, C. D. (2015). Design for computer experiments with qualitative and quantitative factors.

Statistica Sinica, 25(4), 1567–1581.
Goos, P., & Jones, B. (2019). Optimal experimental design in the presence of nested factors. Technometrics, 61(4),

533–544.
Guo, Z., Liu, H., Ong, Y.-S., Qu, X., Zhang, Y., & Zheng, J. (2023). Generative multiform bayesian optimization.

IEEE Transactions on Cybernetics, 53(7), 4347–4360.
He, Y., Cheng, C.-S., & Tang, B. (2018). Strong orthogonal arrays of strength two plus. Annals of Statistics, 46(2),

457–468.
He, Y., Lin, C. D., & Sun, F. (2017). On construction of marginality coupled designs. Statistica Sinica, 27(2), 665–683.
He, Y., & Tang, B. (2013). Strong orthogonal arrays and associated latin hypercubes for computer experiments.

Biometrika, 100(1), 254–260.
Hedayat, A. S., Sloane, N. J. A., & Stufken, J. (1999). Orthogonal arrays: Theory and applications. Springer.
Heris, M. K. (2015). Quadratic assignment problem (qap) using ga, pso and fa. https://yarpiz.com/359/ypap104

-quadratic-assignment-problem
Hoos, H. H. (2012). Programming by optimization. Communications of the ACM, 55(2), 70–80.
Hung, Y., Joseph, V. R., & Melkote, S. N. (2009). Design and analysis of computer experiments with branching and

nested factors. Technometrics, 51(4), 354–365.
Jiang, L., & Yin, J. (2013). An approach of constructing mixed-level orthogonal arrays of strength≥ 3. Science China

Mathematics, 56(6), 1109–1115.
Johnson, M. E., Moore, L. M., & Ylvisaker, D. (1990). Minimax and maximin distance designs. Journal of Statistical

Planning and Inference, 26(2), 131–148.
Joseph, V. R., Gul, E., & Ba, S. (2015). Maximum projection designs for computer experiments. Biometrika, 102(2),

371–380.
Joseph, V. R., & Hung, Y. (2008). Orthogonal-maximin latin hypercube designs. Statistica Sinica, 18(1), 171–186.
López-Ibáñez, M., Stützle, T., & Dorigo, M. (2018). Ant colony optimization: A component-wise overview. In R. Martí,

P. M. Pardalos, & M. G. C. Resende (Eds.), Handbook of heuristics (pp. 371–407). Springer.
McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). Comparison of three methods for selecting values of input

variables in the analysis of output from a computer code. Technometrics, 21(2), 239–245.
Morris, M. D., & Mitchell, T. J. (1995). Exploratory designs for computational experiments. Journal of Statistical

Planning and Inference, 43(3), 381–402.
Pang, S., Wang, J., Lin, D. K. J., & Liu, M.-Q. (2021). Construction of mixed orthogonal arrays with high strength.

Annals of Statistics, 49(5), 2870–2884.
Pang, S., Zhu, Y., & Wang, Y. (2015). A class of mixed orthogonal arrays obtained from projection matrix

inequalities. Journal of Inequalities and Applications, 2015(241), 1–9.
Qian, P. Z. G. (2012). Sliced latin hypercube designs. Journal of the American Statistical Association, 107(497),

393–399.
Schoen, E. D., Eendebak, P. T., & Nguyen, M. V. M. (2010). Complete enumeration of pure-level and mixed-level

orthogonal arrays. Journal of Combinatorial Designs, 18(2), 123–140.
Sloane, N. J. A. (2007). A library of orthogonal arrays. http://neilsloane.com/oadir/

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://yarpiz.com/359/ypap104-quadratic-assignment-problem
https://yarpiz.com/359/ypap104-quadratic-assignment-problem
https://yarpiz.com/359/ypap104-quadratic-assignment-problem
http://neilsloane.com/oadir/
http://neilsloane.com/oadir/

24 WEN et al.

Sun, F., Liu, M.-Q., & Qian, P. Z. G. (2014). On the construction of nested space-filling designs. Annals of Statistics,
42(4), 1394–1425.

Sun, F., Wang, Y., & Xu, H. (2019). Uniform projection designs. Annals of Statistics, 47(1), 641–661.
Tang, B. (1993). Orthogonal array-based latin hypercubes. Journal of the American Statistical Association, 88(424),

1392–1397. https://doi.org/10.1080/01621459.1993.10476423
Wang, K., & Dowling, A. W. (2022). Bayesian optimization for chemical products and functional materials. Current

Opinion in Chemical Engineering, 36, 100728.
Wang, L., Xiao, Q., & Xu, H. (2018). Optimal maximin l1-distance latin hypercube designs based on good lattice

point designs. Annals of Statistics, 46(6B), 3741–3766.
Wang, Y., Sun, F., & Xu, H. (2022). On design orthogonality, maximin distance, and projection uniformity for

computer experiments. Journal of the American Statistical Association, 117(537), 375–385.
Wei, Q., Liu, M.-Q., & Yang, J.-F. (2022). Orthogonal designs with branching and nested factors. Stat, 11(1), e447.
Wessing, S., & López-Ibáñez, M. (2019). Latin hypercube designs with branching and nested factors for initializa-

tion of automatic algorithm configuration. Evolutionary Computation, 27(1), 129–145.
Yuan, R., Yin, Y., Xu, H., & Liu, M.-Q. (2025). A construction method for maximin l1-distance latin hypercube

designs. Statistica Sinica, 35(1), 249–272.
Zhang, Y. (2007). Orthogonal arrays obtained by repeating-column difference matrices. Discrete Mathematics,

307(2), 246–261.
Zhang, Y., Apley, D. W., & Chen, W. (2020). Bayesian optimization for materials design with mixed quantitative

and qualitative variables. Scientific Reports, 10(1), 4924.

How to cite this article: Wen, B., Wang, S., & Sun, F. (2025). Enhanced branching Latin
hypercube design and its application in automatic algorithm configuration. Scandinavian
Journal of Statistics, 1–42. https://doi.org/10.1111/sjos.12786

APPENDIX

The Appendix consists of three parts. In Appendix A, we present all proofs related to the theo-
rems discussed in this article. In Appendix B, we provide some notes on involved designs and
simulations. Appendix C includes some construction results from Algorithm presented in this
article.

A PROOFS OF THE MAIN THEORETICAL RESULTS
A.1 Proof of Theorem 1
We establish the theorem based on the four conditions outlined in Definition 1. The design for
branching factors is evidently an OA. Next, we prove condition (3). For each level of zu, the
design for vzu is L

[
, (1 +

∑u−1
i=1 mi) ∶

∑u
i=1mi

]
with a different order of slices. It can be classified

as a SLHD(sn2, mu, s), thereby confirming the condition (3). Now we consider conditions (2)
and (4). For each level combination of all branching factors, the design for nested and shared
factors is generated by slice Li∗ of L, where i∗ ∈ {0,…, s − 1}. Therefore, when this part of the
design is collapsed into n2 levels, it is an LHD(n2, k). Additionally, based on the structure of D3
and the process of level expansion, D3 can be classified as an LHD(s2n2, r). Hence, conditions (2)
and (4) are both satisfied. Therefore, design D is an EBLHD with N = s2n2 runs and q + m + r
columns.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1080/01621459.1993.10476423
https://doi.org/10.1080/01621459.1993.10476423
https://doi.org/10.1111/sjos.12786

WEN et al. 25

A.2 Proof of Proposition 3
Algorithm 1 can be regarded as an example of Algorithm 2, corresponding to 𝜆 = 1. Therefore,
the following calculations are performed for Algorithm 2. To calculate the maximum correlation
coefficient of a design, we need to compute the correlation coefficient of any two columns and
find the maximum value. Now, we consider the ith and jth columns of D2, denoted by d(n)

i and
d(n)

j , and the uth and vth columns of D3, denoted by d(s)
u and d(s)

v , respectively. Next, we compute
𝜌(d(n)

i , d(n)
j), 𝜌(d(s)

u , d(s)
v), and 𝜌(d(n)

i , d(s)
u), respectively.

Based on the construction, D2 is essentially s L’s stacked on top of each other. We let li and lj
represent the ith and jth columns of L, respectively. Then, we have

𝜌(d(n)
i , d(n)

j) =

(
d(n)

i − d
(n)
i

)(
d(n)

j − d
(n)
j

)
√(

d(n)
i − d

(n)
i

)2
⋅

√(
d(n)

j − d
(n)
j

)2

=
s
(

li − li

)(
lj − lj

)
s
√(

li − li

)2
⋅

√(
lj − lj

)2
= 𝜌(li, lj),

where x is defined as the average value of column vector x. Therefore,

𝜌max(D2) ≤ 𝜌max(P)

can be obtained immediately, where P is the first m columns of L.
For design D3, we know that (1) d(s)

u is generated by d̃u and bu, where d̃u is the uth column of
D̃3 and bu is the uth column of B; (2) d(s)

v is generated by d̃v and bv, where d̃v is the vth column of
D̃3 and bv is the vth column of B. Then, the correlation between d(s)

u and d(s)
v is computed as

𝜌(d(s)
u , d(s)

v) =

(
d(s)

u − d
(s)
u

)
⋅
(

d(s)
v − d

(s)
v

)
√(

d(s)
u − d

(s)
u

)2
⋅

√(
d(s)

v − d
(s)
v

)2

=

(
sd̃u + bu ⊗ 1n2 − (sd̃u + bu)

)(
sd̃v + bv ⊗ 1n2 − (sd̃v + bv)

)
√(

d(s)
u − d

(s)
u

)2
⋅

√(
d(s)

v − d
(s)
v

)2

=
[

s2
(

d̃u − d̃u

)(
d̃v − d̃v

)
+ n2

(
bu ⊗ 1n2 − bu

)(
bv ⊗ 1n2 − bv

)
+s
(

d̃u − d̃u

)(
bv ⊗ 1n2 − bv

)
+ s
(

d̃v − d̃v

)(
bu ⊗ 1n2 − bu

)]
/

[√(
d(s)

u − d
(s)
u

)2
⋅

√(
d(s)

v − d
(s)
v

)2
]

=̂ I11 + I22 + I12√(
d(s)

u − d
(s)
u

)2
⋅

√(
d(s)

v − d
(s)
v

)2
,

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

26 WEN et al.

where each term in the formula is calculated as follows:√(
d(s)

u − d
(s)
u

)2
⋅

√(
d(s)

v − d
(s)
v

)2
=

𝜆s2n2(𝜆2s4n2
2 − 1)

12
,

I11 = s2
(

d̃u − d̃u

)(
d̃v − d̃v

)
= s2 ⋅ s

(
lu+m − lu+m

)(
lv+m − lv+m

)
=

s3𝜆sn2
(
𝜆2s2n2

2 − 1
)

12
𝜌L,(m+u)(m+v),

I22 = n2

(
bu ⊗ 1n2 − bu

)(
bv ⊗ 1n2 − bv

)
= n2𝜆s ⋅ s(s2 − 1)

12
𝜌B,uv,

I12 = s
(

d̃u − d̃u

)(
bv ⊗ 1n2 − bv

)
+ s
(

d̃v − d̃v

)(
bu ⊗ 1n2 − bu

)
= 0.

Therefore, we have

𝜌(d(s)
u , d(s)

v) = I11 + I22√(
d(s)

u − d
(s)
u

)2
⋅

√(
d(s)

v − d
(s)
v

)2
=

s2(𝜆2s2n2
2 − 1)𝜌L,(m+u)(m+v) + (s2 − 1)𝜌B,uv

𝜆2s4n2
2 − 1

,

and

𝜌max(D3) ≤
s2(𝜆2s2n2

2 − 1)𝜌max(Q) + (s2 − 1)𝜌max(B)
𝜆2s4n2

2 − 1
,

where Q is the last r columns of L.
The correlation 𝜌(d(n)

i , d(s)
u), it can be computed as

𝜌(d(n)
i , d(s)

u) =

(
d(n)

i − d
(n)
i

)(
d(s)

u − d
(s)
u

)
√(

d(n)
i − d

(n)
i

)2
⋅

√(
d(s)

u − d
(s)
u

)2

=

(
d(n)

i − d
(n)
i

)(
sd̃u + bu ⊗ 1n2 − (sd̃u + bu)

)
√(

d(n)
i − d

(n)
i

)2
⋅

√(
d(s)

u − d
(s)
u

)2

=
s
(

d(n)
i − d

(n)
i

)(
d̃u − d̃u

)
+
(

d(n)
i − d

(n)
i

)(
bu ⊗ 1n2 − bu

)
√(

d(n)
i − d

(n)
i

)2
⋅

√(
d(s)

u − d
(s)
u

)2

= s

√√√√𝜆2s2n2
2 − 1

𝜆2s4n2
2 − 1

𝜌L,i(m+u),

where 𝜌L,i(m+u) is the correlation of the ith and m + uth columns of L. Therefore, 𝜌max(D2,D3) ≤

s
√

𝜆2s2n2
2−1

𝜆2s4n2
2−1

𝜌max(P,Q). The proof of Proposition 3 is complete.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

WEN et al. 27

A.3 Proof of Theorem 3
According to the way that L is generated, it is clearly an SLHD(rn,m, r). Next, we calculate 𝜌max(L)
and 𝜌max(Li), i = 0,…, r − 1.

We take any two columns from L, denoted as lu and lv, where u, v = 1,…,m. Based on the way
that L is generated, we have

lu = 1r ⊗ rgu + hu ⊗ 1n, lv = 1r ⊗ rgv + hv ⊗ 1n,

where gu and hu represent the uth columns of G and H, respectively, and gv and hv represent the
vth columns of G and H, respectively. Then, we have

𝜌(lu, lv) =

(
lu − lu

)(
lv − lv

)
√(

lu − lu

)2
⋅

√(
lu − lu

)2

=

(
1r ⊗ rgu + hu ⊗ 1n − (rgu + hu)

)(
1r ⊗ rgv + hv ⊗ 1n − (rgv + hv)

)
√(

lu − lu

)2
⋅

√(
lu − lu

)2

=
[(

1r ⊗ rgu − rgu
)(

1r ⊗ rgv − rgv
)
+
(

hu ⊗ 1n − hu

)(
hv ⊗ 1n − hv

)
(
1r ⊗ rgu − rgu

)(
hv ⊗ 1n − hv

)
+
(
1r ⊗ rgv − rgv

)(
hu ⊗ 1n − hu

)]
/

[√(
lu − lu

)2
⋅

√(
lu − lu

)2
]

=̂ I11 + I22 + I12√(
lu − lu

)2
⋅

√(
lu − lu

)2
,

where

I11 =
(
1r ⊗ rgu − rgu

)(
hv ⊗ 1n − hv

)
= r3(gu − gu)(gv − gv) =

r3n(n2 − 1)𝜌G,uv

12
,

I22 =
(

hu ⊗ 1n − hu

)(
hv ⊗ 1n − hv

)
= n(hu − hu)(hv − hv) =

nr(r2 − 1)𝜌H,uv

12
,

I12 =
(
1r ⊗ rgu − rgu

)(
hv ⊗ 1n − hv

)
+
(
1r ⊗ rgv − rgv

)(
hu ⊗ 1n − hu

)
= r

n∑
j=1

r∑
l=1

(gju − gu)(hlv − hv) + r
n∑

j=1

r∑
l=1

(gjv − gv)(hlu − hu) = 0.

Therefore, we have

𝜌(lu, lv) =
r2(n2 − 1)𝜌G,uv + (r2 − 1)𝜌H,uv

r2n2 − 1
,

𝜌max(L) ≤
r2(n2 − 1)𝜌max(G) + (r2 − 1)𝜌max(H)

r2n2 − 1
.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

28 WEN et al.

Now, we focus on the correlation of each slice Li, i = 0,…, r − 1. We let li
u and li

v denote the
uth and vth columns of Li, then, we have li

u = rgu + h(i+1)u and li
v = rgv + h(i+1)v. 𝜌(li

u, li
v) can be

calculated as

𝜌(li
u, li

v) =

(
li
u − l

i
u

)(
li
v − l

i
v

)
√(

li
u − l

i
u

)2
⋅

√(
li
v − l

i
v

)2

=
(

rgu + h(i+1)u − (rgu + h(i+1)u)
)(

rgv + h(i+1)v − (rgv + h(i+1)v)
)√(

li
u − l

i
u

)2
⋅

√(
li
v − l

i
v

)2

=
r2(gu − gu

)(
gv − gv

)√
r2
(

gu − gu
)2

⋅
√

r2
(

gv − gv
)2

= 𝜌G,uv.

Therefore,

𝜌max(Li) ≤ 𝜌max(G), i = 0,…, r − 1.

The proof of Theorem 3 is complete.

A.4 Proof of Theorem 4
First, we demonstrate that L is an SLHD(𝜆2s3, k, 𝜆s). Because of step 1 and step 2 in Algorithm 3,
it is not difficult to see that each L̃i is an LHD(n2, k), i = 0,…, 𝜆s − 1. After the level expansion of
L̃ in step 3, we know that L is an SLHD(𝜆2s3, k, 𝜆s).

Now, we prove conclusion (ii). Based on the construction, it is easily determined that each Li
is essentially A after collapsing to s levels; hence, s × s stratification of each slice Li can be realized.
Additionally, it follows from step 1 in Algorithm 3 and Proposition 1 in He et al. (2018) that design
E is an SOA(𝜆sn2, k, 𝜆s2, 2+), which can achieve stratification on s × 𝜆s2 and 𝜆s2 × s grids. Because
row permutations and level expansion do not affect the stratification properties of a design, L can
also achieve stratification on s × 𝜆s2 and 𝜆s2 × s grids.

Next, we compute the correlation of L. Without loss of generality, we take the uth and vth
columns from L, denoted as lu and lv, u, v = 1,…, k. Based on the construction, they are gen-
erated by the uth and vth columns of L̃ and G, respectively, which are called l̃u, l̃v, gu, and gv.
Specifically,

lu = 𝜆sl̃u + gu ⊗ 1n2 , lv = 𝜆sl̃v + gv ⊗ 1n2 .

We let x denote the mean value of vector x. Then, we have

𝜌(lu, lv) =

(
lu − lu

)(
lv − lv

)
√(

lu − lu

)2
⋅

√(
lv − lv

)2

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

WEN et al. 29

=

(
𝜆sl̃u + gu ⊗ 1n2 − (𝜆sl̃u + gu)

)(
𝜆sl̃v + gv ⊗ 1n2 − (𝜆sl̃v + gv)

)
√(

lu − lu

)2
⋅

√(
lv − lv

)2

=
[
𝜆2s2

(
l̃u − l̃u

)(
l̃v − l̃v

)
+
(

gu ⊗ 1n2 − gu
)(

gv ⊗ 1n2 − gv
)

+𝜆s
(

l̃u − l̃u

)(
gv ⊗ 1n2 − gv

)
+ 𝜆s

(
l̃v − l̃v

)(
gu ⊗ 1n2 − gu

)]
/

[√(
lu − lu

)2
⋅

√(
lv − lv

)2
]

=̂ I11 + I22 + I12√
(lu − lu)2 ⋅

√(
lv − lv

)2
,

where

I11 = 𝜆2s2
(

l̃u − l̃u

)(
l̃v − l̃v

)
= 𝜆2s2(eu − ēu)(ev − ēv)

= 𝜆2s2(1𝜆s ⊗ 𝜆sau + cu ⊗ 1n2 − (𝜆sāu + cu)
)(

1𝜆s ⊗ 𝜆sav + cv ⊗ 1n2 − (𝜆sāv + cv)
)

= 𝜆2s2[(1𝜆s ⊗ 𝜆sau − 𝜆sāu)(1𝜆s ⊗ 𝜆sav − 𝜆sāv) +
(

cu ⊗ 1n2 − cu
)(

cv ⊗ 1n2 − cv
)]

= 𝜆2s2n2
(

cu − cu
)(

cv − cv
)

= 𝜆2s2n2
𝜆s(𝜆2s2 − 1)

12
𝜌C,uv,

I22 = n2(gu − gu)(gv − gv) =
n2𝜆s(𝜆2s2 − 1)

12
𝜌G,uv,

I12 = 𝜆s
(

l̃u − l̃u

)(
gv ⊗ 1n2 − gv

)
+ 𝜆s

(
l̃v − l̃v

)(
gu ⊗ 1n2 − gu

)
= 0,

eu and ev denote the uth and vth columns of E; au and av denote the uth and vth columns of A;
and some of the cross terms in the calculation are clearly 0. Therefore, we have

𝜌(lu, lv) =
𝜆2s2 − 1
𝜆2s2n2

2 − 1
(𝜆2s2𝜌C,uv + 𝜌G,uv),

𝜌max(L) ≤
𝜆2s2 − 1
𝜆2s2n2

2 − 1
(𝜆2s2𝜌max(C) + 𝜌max(G)).

The proof of Theorem 4 is complete.

A.5 Proof of Theorem 5
Conclusion (ii) is obviously true; thus, we only prove (i). From Theorem 3, we immediately
know that

𝜌max(D3) ≤
n2

1(n
2
2 − 1)𝜌max(Lq+1) + (n2

1 − 1)𝜌max(G)
n2

1n2
2 − 1

.

Next, we calculate 𝜌max(D2i), 𝜌max(D2i,D2j) and 𝜌max(D2i,D3), respectively.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

30 WEN et al.

For D2i, we take the uth and vth columns from D2i, which are denoted as di
u and di

v, respectively.
They can be expressed as

di
u = 1n1 ⊗

n1

si
lu + bu ⊗ 1n2 , di

v = 1n1 ⊗
n1

si
lv + bv ⊗ 1n2 ,

where lu, lv, bu, and bv are the uth and vth columns of L and B, respectively. Then, we can compute
𝜌(di

u, di
v) as follows:

𝜌(di
u, di

v) =

(
di

u − d
i
u

)(
di

v − d
i
v

)
√(

di
u − d

i
u

)2
⋅

√(
di

v − d
i
v

)2

=

(
1n1 ⊗

n1
si

lu + bu ⊗ 1n2 − (n1
si

lu + bu)
)(

1n1 ⊗
n1
si

lv + bv ⊗ 1n2 − (n1
si

lv + bv)
)

√(
di

u − d
i
u

)2
⋅

√(
di

v − d
i
v

)2

=
[(

1n1 ⊗
n1

si
lu −

n1

si
lu

)(
1n1 ⊗

n1

si
lv −

n1

si
lv

)
+
(

bu ⊗ 1n2 − bu

)(
bv ⊗ 1n2 − bv

)
+
(

1n1 ⊗
n1

si
lu −

n1

si
lu

)(
bv ⊗ 1n2 − bv

)
+
(

1n1 ⊗
n1

si
lv −

n1

si
lv

)(
bu ⊗ 1n2 − bu

)]
/

[√(
di

u − d
i
u

)2
⋅

√(
di

v − d
i
v

)2
]

=̂ I11 + I22 + I12√(
di

u − d
i
u

)2
⋅

√(
di

v − d
i
v

)2
,

where√(
di

u − d
i
u

)2
⋅

√(
di

v − d
i
v

)2
= si ⋅

n1n2

si

(
n2

1n2
2

s2
i

− 1

)
∕12,

I11 =
(

1n1 ⊗
n1

si
lu −

n1

si
lu

)(
1n1 ⊗

n1

si
lv −

n1

si
lv

)
=

n3
1

s2
i

(
lu − lu

)(
lv − lv

)
=

n3
1n2(n2

2 − 1)
12s2

i

𝜌Li,uv,

I22 =
(

bu ⊗ 1n2 − bu

)(
bv ⊗ 1n2 − bv

)
= n2

(
bu − bu

)(
bv − bv

)
= n2si ⋅

n1

si

(
n2

1

s2
i

− 1

)
𝜌Bi,uv∕12,

I12 =
(

1n1 ⊗
n1

si
lu −

n1

si
lu

)(
bv ⊗ 1n2 − bv

)
+
(

1n1 ⊗
n1

si
lv −

n1

si
lv

)(
bu ⊗ 1n2 − bu

)
= 0,

𝜌Li,uv represents the correlation coefficient of the uth and vth columns in Li, and 𝜌Bi,uv is similarly
defined. Therefore, after a simple calculation, we have

𝜌(di
u, di

v) =
n2

1(n
2
2 − 1)𝜌Li,uv + (n2

1 − s2
i)𝜌Bi,uv

n2
1n2

2 − s2
i

,

𝜌max(D2i) ≤
n2

1(n
2
2 − 1)𝜌max(Li) + (n2

1 − s2
i)𝜌max(Bi)

n2
1n2

2 − s2
i

.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

WEN et al. 31

From D2i and D2j, we take the uth and vth columns, respectively, and denote them as di
u and

dj
v, respectively. Based on the algorithm, they can be expressed as

di
u = 1n1 ⊗

n1

si
lu + bu ⊗ 1n2 , dj

v = 1n1 ⊗
n1

sj
lv + bv ⊗ 1n2 ,

where lu and bu are the uth columns of Bi and Li, respectively, and lv and bv are the vth columns
of Bj and Lj, respectively. Then, we have

𝜌(di
u, dj

v) =

(
di

u − d
i
u

)(
dj

v − d
j
v

)
√(

di
u − d

i
u

)2
⋅

√(
dj

v − d
j
v

)2

=

(
1n1 ⊗

n1
si

lu + bu ⊗ 1n2 −
(

n1
si

lu + bu

))(
1n1 ⊗

n1
sj

lv + bv ⊗ 1n2 −
(

n1
sj

lv + bv

))
√(

di
u − d

i
u

)2
⋅

√(
dj

v − d
j
v

)2

=
[(

1n1 ⊗
n1

si
lu −

n1

si
lu

)(
1n1 ⊗

n1

sj
lv −

n1

sj
lv

)
+
(

bu ⊗ 1n2 − bu

)(
bv ⊗ 1n2 − bv

)
+
(

1n1 ⊗
n1

si
lu −

n1

si
lu

)(
bv ⊗ 1n2 − bv

)
+
(

1n1 ⊗
n1

sj
lv −

n1

sj
lv

)(
bu ⊗ 1n2 − bu

)]

∕

[√(
di

u − d
i
u

)2
⋅

√(
dj

v − d
j
v

)2
]

=̂ I11 + I22 + I12√(
di

u − d
i
u

)2
⋅

√(
dj

v − d
j
v

)2
,

where√(
di

u − d
i
u

)2
⋅

√(
di

v − d
i
v

)2
=

√√√√ sin1n2

si

(
n2

1n2
2

s2
i

− 1

)
∕12 ⋅

√√√√ sjn1n2

sj

(
n2

1n2
2

s2
j

− 1

)
∕12,

I11 =
(

1n1 ⊗
n1

si
lu −

n1

si
lu

)(
1n1 ⊗

n1

sj
lv −

n1

sj
lv

)
=

n3
1

sisj

(
lu − lu

)(
lv − lv

)
=

n3
1n2(n2

2 − 1)
12sisj

𝜌(Liu,Ljv),

I22 =
(

bu ⊗ 1n2 − bu

)(
bv ⊗ 1n2 − bv

)
= n2

(
bu − bu

)(
bv − bv

)
= n2 ⋅

√√√√si
n1

si

(
n2

1

s2
i

− 1

)
∕12 ⋅

√√√√sj
n1

sj

(
n2

1

s2
j

− 1

)
∕12 ⋅ 𝜌(Biu,Bjv),

I12 =
(

1n1 ⊗
n1

si
lu −

n1

si
lu

)(
bv ⊗ 1n2 − bv

)
+
(

1n1 ⊗
n1

sj
lv −

n1

sj
lv

)(
bu ⊗ 1n2 − bu

)
= 0,

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

32 WEN et al.

𝜌(Liu,Ljv) represents the correlation coefficient between the uth column of Li and the vth column
of Lj, and 𝜌(Biu,Bjv) is defined similarly. After simplification, we obtain

𝜌(di
u, dj

v) =
n2

1(n
2
2 − 1)𝜌(Liu,Ljv) +

√
(n2

1 − s2
i)(n

2
1 − s2

j)𝜌(Biu,Bjv)√
(n2

1n2
2 − s2

i)(n
2
1n2

2 − s2
j)

,

𝜌max(D2i,D2j) ≤
n2

1(n
2
2 − 1)𝜌max(Li,Lj) +

√
(n2

1 − s2
i)(n

2
1 − s2

j)𝜌max(Bi,Bj)√
(n2

1n2
2 − s2

i)(n
2
1n2

2 − s2
j)

.

For D2i and D3, the calculation process for 𝜌(di
u, d(s)

u′) is similar to that described above, where
d(s)

u′ represents the u′th column of D3; hence, we omit it here. The following results can be obtained:

𝜌(di
u, d(s)

u′) =
n2

1(n
2
2 − 1)𝜌(Liu,L(q+1)u′) +

√
(n2

1 − s2
i)(n

2
1 − 1)𝜌(Biu,Gu′)√

(n2
1n2

2 − s2
i)(n

2
1n2

2 − 1)
,

𝜌max(D2i,D3) ≤
n2

1(n
2
2 − 1)𝜌max(Li,Lq+1) +

√
(n2

1 − s2
i)(n

2
1 − 1)𝜌max(Bi,G)√

(n2
1n2

2 − s2
i)(n

2
1n2

2 − 1)
,

where L(q+1)u′ is the u′th column of Lq+1 and Gu′ is the u′th column of G. The proof of Theorem 5
is complete.

B NOTES ON THE DESIGNS AND SIMULATIONS
B.1 The SLHD in Example 4
The generated L: SLHD (108, 6, 6) is

LT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 36 72 6 42 78 12 48 84 18 54 90 24 60 96 30 66 102
7 43 79 19 55 91 67 103 31 97 25 61 49 85 13 7 1 37

14 50 86 68 104 32 20 56 92 74 2 38 80 8 44 62 98 26
21 57 93 99 27 63 75 3 39 15 51 87 69 105 33 45 81 9
28 64 100 52 88 16 82 10 46 70 106 34 4 40 76 94 22 58
35 71 107 77 5 41 65 101 29 47 83 11 95 23 59 17 53 89

1 37 73 7 43 79 13 49 85 19 55 91 25 61 97 31 67 103
9 45 81 57 93 21 105 33 69 63 99 27 87 15 51 3 39 75

53 89 17 35 71 107 95 23 59 77 5 41 47 83 11 29 65 101
94 22 58 100 28 64 4 40 76 52 88 16 70 106 34 10 46 82
62 98 26 86 14 50 44 80 8 32 68 104 74 2 38 20 56 92

102 30 66 36 72 0 60 96 24 78 6 42 18 54 90 12 48 84

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

WEN et al. 33

2 38 74 8 44 80 14 50 86 20 56 92 26 62 98 32 68 104
47 83 11 95 23 59 71 107 35 101 29 65 17 53 89 5 41 77
15 51 87 105 33 69 93 21 57 39 75 3 9 45 81 63 99 27
90 18 54 24 60 96 36 72 0 48 84 12 30 66 102 78 6 42
97 25 61 49 85 13 7 43 79 103 31 67 1 37 73 55 91 19
70 106 34 40 76 4 100 28 64 10 46 82 22 58 94 88 16 52

3 39 75 9 45 81 15 51 87 21 57 93 27 63 99 33 69 105
82 10 46 58 94 22 106 34 70 28 64 100 16 52 88 40 76 4
84 12 48 102 30 66 54 90 18 0 36 72 42 78 6 24 60 96
20 56 92 62 98 26 38 74 2 14 50 86 104 32 68 80 8 44
65 101 29 17 53 89 83 11 47 35 71 107 41 77 5 95 23 59
67 103 31 73 1 37 25 61 97 7 43 79 91 19 55 49 85 13

4 40 76 10 46 82 16 52 88 22 58 94 28 64 100 34 70 106
44 80 8 92 20 56 32 68 104 26 62 98 50 86 14 74 2 38
85 13 49 67 103 31 19 55 91 37 73 1 7 43 79 97 25 61
59 95 23 65 101 29 5 41 77 89 17 53 107 35 71 11 47 83
24 60 96 84 12 48 6 42 78 66 102 30 72 0 36 54 90 18

105 33 69 3 39 75 27 63 99 81 9 45 57 93 21 51 87 15

5 41 77 11 47 83 17 53 89 23 59 95 29 65 101 35 71 107
78 6 42 18 54 90 30 66 102 60 96 24 84 12 48 36 72 0
52 88 16 34 70 106 58 94 22 4 40 76 82 10 46 100 28 64
55 91 19 25 61 97 73 1 37 85 13 49 31 67 103 43 79 7
99 27 63 15 51 87 45 81 9 105 33 69 39 75 3 21 57 93
32 68 104 2 38 74 98 26 62 44 80 8 56 92 20 86 14 50

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B1)

B.2 The simulations in Table 5
The CROAs involved in the construction of the SLHDs in Table 5 are listed below, whereas C and
G were generated by the R function SLHD.

• SLHD(27, 3, 3) in Table 5: CROA(9, 3, 3, 2) is as follows, and C,G ∈ LHD(3, 3).

CROA(9, 3, 3, 2) ∶
⎛⎜⎜⎜⎝

0 1 2
0 1 2
0 2 1

0 1 2
1 2 0
1 0 2

0 1 2
2 0 1
2 1 0

⎞⎟⎟⎟⎠
T

(B2)

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

34 WEN et al.

• SLHD(64, 4, 4) in Table 5: CROA(16, 4, 4, 2) is as follows, and C,G ∈ LHD(4, 4).

CROA(16, 4, 4, 2) ∶

⎛⎜⎜⎜⎜⎜⎝

0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2

0 1 2 3
3 2 1 0
1 0 3 2
2 3 0 1

⎞⎟⎟⎟⎟⎟⎠

T

. (B3)

• SLHD(125, 5, 5) in Table 5: CROA(25, 5, 5, 2) is as follows, and C,G ∈ LHD(5, 5).

CROA(25, 5, 5, 2) ∶

⎛⎜⎜⎜⎜⎜⎝

0 1 2 3 4
0 1 2 3 4
0 2 3 4 1
0 3 4 1 2
0 4 1 2 3

0 1 2 3 4
1 2 4 0 3
1 4 0 3 2
1 0 3 2 4
1 3 2 4 0

0 1 2 3 4
2 4 3 1 0
2 3 1 0 4
2 1 0 4 3
2 0 4 3 1

0 1 2 3 4
3 0 1 4 2
3 1 4 2 0
3 4 2 0 1
3 2 0 1 4

0 1 2 3 4
4 3 0 2 1
4 0 2 1 3
4 2 1 3 0
4 1 3 0 2

⎞⎟⎟⎟⎟⎟⎠

T

. (B4)

• SLHD(108, 6, 6) in Table 5: The required CROA(18, 6, 3, 2) is the same as A in Equation (7), and
C,G ∈ LHD(6, 6).

B.3 On the simulation studies
The first three designs are EBLHD(40, 1 + 2 + 2)with a 5-level branching factor, EBLHD(64, 1 +
4 + 4) with a 4-level branching factor, and EBLHD(90, 1 + 3 + 4) with a 5-level branching factor.
Their structures are listed in Tables B1–B3.

1. For the EBLHDs:
a. For L in the three designs, OA(8, 4, 2, 3)-based LHD(8, 4), OA(16, 8, 2, 3)-based LHD(16, 8),

and OA(18, 7, 3, 2)-based LHD(18, 7) are used, respectively.
(All the OAs involved here can be found at http://neilsloane.com/oadir/#2_3.)

T A B L E B1 EBLHD(40, 1 + 2 + 2).

D1 (D2, D̃3)
08 L

18 L

28 L

38 L

48 L

T A B L E B2 EBLHD(64, 1 + 4 + 4).

D1 (D2, D̃3)
016 L

116 L

216 L

316 L

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://neilsloane.com/oadir/#2_3
http://neilsloane.com/oadir/#2_3

WEN et al. 35

T A B L E B3 EBLHD(90, 1 + 3 + 4).

D1 (D2, D̃3)
018 L

118 L

218 L

318 L

418 L

b. For B in expansion D3 = D̃3 + B ⊗ 1n for the three designs, LHD(5, 2), LHD(4, 4), and
LHD(5, 4) are used, respectively, which are randomly generated by the SLHD function.

2. For random BLHDs, the D3 is generated by rLHD function, and the D2 part is obtained by
juxtaposing rows of s random LHDs, where s represents the level number of branching factor.
EBLHD(324, 2+4+2) with the same experimental settings as in Example 2:

1. The EBLHDs are produced based on Theorems 2 and 4. We ran the algorithm 100 times with
different values of C, G, and B, which were generated randomly by the R function SLHD. The
remaining MOA(18, 3361, 2) and CROA(18, 6, 3, 2) are the same as in Examples 2 and 4.

2. For random BLHDs, all the required LHDs are generated by the rLHD function.

B.4 On the applications in Section 6

T A B L E B4 Designs used in optim.

L

A B Run Run
0 0 0 1 1 3 5 9 4 4 26 2 4 6 7 1

0 1 0 1 2 17 19 27 38 40 27 12 18 22 31 49

1 0 1 0 3 29 29 33 46 14 28 24 22 32 49 19

1 1 1 0 4 35 35 41 18 26 29 32 34 42 11 27

5 41 45 19 28 38 30 42 46 14 25 31

6 5 15 11 14 12 31 4 10 16 15 17

7 15 21 43 6 32 32 18 26 46 1 33

8 27 43 7 32 20 33 26 42 0 33 23

9 39 3 39 26 46 34 36 8 36 29 43

10 49 31 29 40 0 35 48 36 20 41 9

11 1 25 23 20 28 36 6 28 24 27 21

12 13 47 37 10 2 37 14 48 34 17 5

13 23 37 13 8 48 38 20 30 18 5 47

14 37 17 1 42 30 39 34 16 2 43 35

15 43 7 47 36 16 40 40 0 48 35 15

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

36 WEN et al.

T A B L E B4 (Continued)

L

A B Run Run
16 7 39 31 30 34 41 0 32 30 37 37

17 19 1 17 48 24 42 16 2 10 47 29

18 25 11 45 22 6 43 28 12 44 21 3

19 31 49 21 2 18 44 30 44 26 9 11

20 45 27 3 16 44 45 46 20 8 13 45

21 9 41 49 44 42 46 8 40 40 45 41

22 11 33 5 24 10 47 10 38 4 23 13

23 21 9 25 12 36 48 22 6 28 19 39

24 33 23 15 34 8 49 38 24 12 39 7

25 47 13 35 0 22 50 44 14 38 3 25

T A B L E B5 Factors in the ACOQAP algorithm.

Parameter Domain Default

algorithm {AS, EAS, RAS, ACS, MMAS, BWAS} MMAS

m [1, 500] 25

𝛼 (0.0, 5.0) 1.0

𝛽 (0.0, 10.0) 2.0

𝜌 (0.01, 1.0) 0.2

q0 (0.0, 1.0) 0.0

cl [5, 50] 20

𝜉 (0.01, 1.0) -

rasrank [1, 100] -

melite [1, 750] -

pdec (0.001, 0.5) -

ph-limits {Yes, no} Yes

slen [20, 500] 250

restart {Never, branch-factor, distance, always} Branch-factor

resbf (1.0, 2.0) 1.00001

resdist (0.01, 0.1) -

resit [1, 500] 250

localsearch {None, 2-opt, 2.5-opt,3-opt} 3-opt

dlb-bits {Yes, no} Yes

nnls [5,50] 20

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

WEN et al. 37

T A B L E B5 (Continued)

Parameter Domain Default
rasrank When algo = RAS

melite When algo = EAS

𝜉 When algo = ACS

pdec When ph-limits = yes

ph-limits When algo ≠ ACS

slen When algo = MMAS

resbf When restart = branch-factor

resdist When restart = distance

resit When restart ≠ never

dlb − bits,nnls When localsearch ≠ none

T A B L E B6 Designs used in ACOQAP.

Run A B LT

1 0 0 0 6 3 6 2 6 3 4 8 13 1 3 0 2

2 0 0 1 4 2 2 0 0 5 2 4 4 3 1 0 2

3 0 1 0 5 5 1 3 7 7 6 6 3 1 0 2 3

4 0 1 1 1 6 4 1 1 0 1 7 18 3 1 0 2

5 0 2 0 2 1 7 6 3 1 3 0 18 0 3 1 2

6 0 2 1 0 4 5 4 2 6 5 7 19 2 3 1 0

7 0 3 0 3 7 3 5 5 4 0 2 1 0 2 1 3

8 0 3 1 7 0 0 7 4 2 7 0 3 2 1 0 3

9 1 0 0 6 5 4 3 5 7 1 7 4 1 0 2 3

10 1 0 1 3 3 7 0 6 3 5 5 12

11 1 1 0 1 7 6 6 4 6 5 9 12

12 1 1 1 5 1 3 1 1 0 3 5 13

13 1 2 0 7 6 2 5 2 1 9 3 6

14 1 2 1 0 0 5 4 3 4 7 1 6

15 1 3 0 4 2 1 7 7 2 5 6 15

16 1 3 1 2 4 0 2 0 5 2 8 10

17 2 0 0 5 1 4 7 1 2 9 6 9

18 2 0 1 6 2 7 3 3 5 0 2 16

19 2 1 0 4 7 0 1 0 3 8 0 8

20 2 1 1 0 5 3 6 2 7 7 3 0

21 2 2 0 7 4 2 5 4 0 0 5 2

22 2 2 1 3 0 5 0 5 1 1 2 17

23 2 3 0 1 3 1 4 6 4 4 3 14

24 2 3 1 2 6 6 2 7 6 3 1 2

25 3 0 0 7 6 3 7 1 1 7 9 16

26 3 0 1 0 5 2 2 5 7 3 1 9

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

38 WEN et al.

T A B L E B6 (Continued)

Run A B LT

27 3 1 0 6 4 0 0 6 3 4 2 17

28 3 1 1 1 3 7 6 4 0 9 8 15

29 3 2 0 5 0 1 4 3 6 4 4 10

30 3 2 1 3 1 5 1 2 2 6 9 14

31 3 3 0 2 7 4 3 0 4 1 5 0

32 3 3 1 4 2 6 5 7 5 9 7 7

33 4 0 0 3 3 7 2 6 7 8 3 11

34 4 0 1 6 6 2 5 7 6 6 0 8

35 4 1 0 1 0 3 0 4 3 0 4 7

36 4 1 1 0 2 4 4 0 1 2 1 5

37 4 2 0 2 7 5 3 5 0 8 6 19

38 4 2 1 5 4 6 6 2 4 2 8 11

39 4 3 0 4 5 0 1 1 5 8 4 5

40 4 3 1 7 1 1 7 3 2 6 9 1

C CONSTRUCTION RESULTS

T A B L E C1 Results from Algorithms 1 and 3.

OA(n1,q, s, 2) CROA(n2,k, s, 2) SLHD(n,k, s) EBLHD(N,q + k) Stratification
OA(4, 3, 2, 2) CROA(4, 2, 2, 2) SLHD(8, 2, 2) EBLHD(16, 2 + 2) 2 × 2 ∗, 2 × 4, 4 × 2

OA(9, 4, 3, 2) CROA(9, 3, 3, 2) SLHD(27, 3, 3) EBLHD(81, 3 + 3) 3 × 3 ∗, 3 × 9, 9 × 3

OA(16, 5, 4, 2) CROA(16, 4, 4, 2) SLHD(64, 4, 4) EBLHD(256, 4 + 4) 4 × 4 ∗, 4 × 16, 16 × 4

OA(25, 6, 5, 2) CROA(25, 5, 5, 2) SLHD(125, 5, 5) EBLHD(625, 5 + 5) 5 × 5 ∗, 5 × 25, 25 × 5

OA(36, 7, 6, 2) CROA(36, 6, 6, 2) SLHD(216, 6, 6) EBLHD(1296, 6 + 6) 6 × 6 ∗, 6 × 36, 36 × 6

OA(49, 8, 7, 2) CROA(49, 7, 7, 2) SLHD(343, 7, 7) EBLHD(2401, 7 + 7) 7 × 7 ∗, 7 × 49, 49 × 7

Note: In the stratification column, the values with “∗” indicate the stratification property of each slice of L. In the stratification
column, the values without “∗” represent the stratification property of L.

T A B L E C2 Results from Algorithms 2 and 3.

MOA(n1, sq(n1

s
), 2) CROA(n2,k, s, 2) SLHD(n,k, n1

s
) EBLHD(N,q + k) Stratification

MOA(8, 2441) CROA(8, 4, 2, 2) SLHD(32, 4, 4) EBLHD(64, 4 + 4) 2 × 2 ∗, 2 × 8, 8 × 2

MOA(16, 2881) CROA(16, 8, 2, 2) SLHD(128, 8, 8) EBLHD(256, 8 + 8) 2 × 2 ∗, 2 × 16, 16 × 2

MOA(18, 3661) CROA(18, 6, 3, 2) SLHD(108, 6, 6) EBLHD(324, 6 + 6) 3 × 3 ∗, 3 × 18, 18 × 3

MOA(27, 3991) CROA(27, 9, 3, 2) SLHD(243, 9, 9) EBLHD(729, 9 + 9) 3 × 3 ∗, 3 × 27, 27 × 3

MOA(32, 4881) CROA(32, 8, 4, 2) SLHD(256, 8, 8) EBLHD(1024, 8 + 8) 4 × 4 ∗, 4 × 32, 32 × 4

MOA(32, 216161) CROA(32, 16, 2, 2) SLHD(512, 16, 16) EBLHD(1024, 16 + 16) 2 × 2 ∗, 2 × 32, 32 × 2

Note: In the stratification column, the values with “∗” indicate the stratification property of each slice of L. In the stratification
column, the values without “∗” represent the stratification property of L.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

WEN et al. 39

T A B L E C3 Results from Algorithm 4.

OA(n,k, s, t) s1 s2 EBLHD(n ⋅ s1s2,p) Stratification
OA(4, 3, 2, 2) 2 3 EBLHD(24, 5) 2 × 2

2 4 EBLHD(32, 5) 2 × 2

2 5 EBLHD(40, 5) 2 × 2

2 6 EBLHD(48, 6) 2 × 2

3 4 EBLHD(48, 5) 2 × 2

3 5 EBLHD(60, 5) 2 × 2

3 6 EBLHD(72, 5) 2 × 2

4 5 EBLHD(80, 5) 2 × 2

4 6 EBLHD(96, 5) 2 × 2

5 6 EBLHD(120, 5) 2 × 2

OA(8, 7, 2, 2) 2 3 EBLHD(48, 9) 2 × 2

2 4 EBLHD(64, 9) 2 × 2

2 5 EBLHD(80, 9) 2 × 2

2 6 EBLHD(96, 9) 2 × 2

3 4 EBLHD(96, 9) 2 × 2

3 5 EBLHD(120, 9) 2 × 2

3 6 EBLHD(144, 9) 2 × 2

4 5 EBLHD(160, 9) 2 × 2

4 6 EBLHD(192, 9) 2 × 2

5 6 EBLHD(240, 9) 2 × 2

OA(8, 4, 2, 3) 2 3 EBLHD(48, 6) 2 × 2 × 2

2 4 EBLHD(64, 6) 2 × 2 × 2

2 5 EBLHD(80, 6) 2 × 2 × 2

2 6 EBLHD(96, 6) 2 × 2 × 2

3 4 EBLHD(96, 6) 2 × 2 × 2

3 5 EBLHD(120, 6) 2 × 2 × 2

3 6 EBLHD(144, 6) 2 × 2 × 2

4 5 EBLHD(160, 6) 2 × 2 × 2

4 6 EBLHD(192, 6) 2 × 2 × 2

5 6 EBLHD(240, 6) 2 × 2 × 2

OA(12, 11, 2, 2) 2 3 EBLHD(72, 13) 2 × 2

2 4 EBLHD(96, 13) 2 × 2

2 5 EBLHD(120, 13) 2 × 2

2 6 EBLHD(144, 13) 2 × 2

3 4 EBLHD(144, 13) 2 × 2

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

40 WEN et al.

T A B L E C3 (Continued)

OA(n,k, s, t) s1 s2 EBLHD(n ⋅ s1s2,p) Stratification
3 5 EBLHD(180, 13) 2 × 2

3 6 EBLHD(216, 13) 2 × 2

4 5 EBLHD(240, 13) 2 × 2

4 6 EBLHD(288, 13) 2 × 2

5 6 EBLHD(360, 13) 2 × 2

OA(16, 15, 2, 2) 2 3 EBLHD(96, 17) 2 × 2

2 4 EBLHD(128, 17) 2 × 2

2 5 EBLHD(160, 17) 2 × 2

2 6 EBLHD(192, 17) 2 × 2

3 4 EBLHD(192, 17) 2 × 2

3 5 EBLHD(240, 17) 2 × 2

3 6 EBLHD(288, 17) 2 × 2

4 5 EBLHD(320, 17) 2 × 2

4 6 EBLHD(384, 17) 2 × 2

5 6 EBLHD(480, 17) 2 × 2

OA(16, 8, 2, 3) 2 3 EBLHD(96, 10) 2 × 2 × 2

2 4 EBLHD(128, 10) 2 × 2 × 2

2 5 EBLHD(160, 10) 2 × 2 × 2

2 6 EBLHD(192, 10) 2 × 2 × 2

3 4 EBLHD(192, 10) 2 × 2 × 2

3 5 EBLHD(240, 10) 2 × 2 × 2

3 6 EBLHD(288, 10) 2 × 2 × 2

4 5 EBLHD(320, 10) 2 × 2 × 2

4 6 EBLHD(384, 10) 2 × 2 × 2

5 6 EBLHD(480, 10) 2 × 2 × 2

OA(20, 19, 2, 2) 2 3 EBLHD(120, 21) 2 × 2

2 4 EBLHD(160, 21) 2 × 2

2 5 EBLHD(200, 21) 2 × 2

2 6 EBLHD(240, 21) 2 × 2

3 4 EBLHD(240, 21) 2 × 2

3 5 EBLHD(300, 21) 2 × 2

3 6 EBLHD(360, 21) 2 × 2

4 5 EBLHD(400, 21) 2 × 2

4 6 EBLHD(480, 21) 2 × 2

5 6 EBLHD(600, 21) 2 × 2

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

WEN et al. 41

T A B L E C3 (Continued)

OA(n,k, s, t) s1 s2 EBLHD(n ⋅ s1s2,p) Stratification
OA(24, 12, 2, 3) 2 3 EBLHD(144, 14) 2 × 2 × 2

2 4 EBLHD(192, 14) 2 × 2 × 2

2 5 EBLHD(240, 14) 2 × 2 × 2

2 6 EBLHD(288, 14) 2 × 2 × 2

3 4 EBLHD(288, 14) 2 × 2 × 2

3 5 EBLHD(360, 14) 2 × 2 × 2

3 6 EBLHD(432, 14) 2 × 2 × 2

4 5 EBLHD(480, 14) 2 × 2 × 2

4 6 EBLHD(576, 14) 2 × 2 × 2

5 6 EBLHD(720, 14) 2 × 2 × 2

OA(32, 16, 2, 3) 2 3 EBLHD(192, 18) 2 × 2 × 2

2 4 EBLHD(256, 18) 2 × 2 × 2

2 5 EBLHD(320, 18) 2 × 2 × 2

2 6 EBLHD(384, 18) 2 × 2 × 2

3 4 EBLHD(384, 18) 2 × 2 × 2

3 5 EBLHD(480, 18) 2 × 2 × 2

3 6 EBLHD(576, 18) 2 × 2 × 2

4 5 EBLHD(640, 18) 2 × 2 × 2

4 6 EBLHD(768, 18) 2 × 2 × 2

5 6 EBLHD(960, 18) 2 × 2 × 2

OA(40, 20, 2, 3) 2 3 EBLHD(240, 22) 2 × 2 × 2

2 4 EBLHD(320, 22) 2 × 2 × 2

2 5 EBLHD(400, 22) 2 × 2 × 2

2 6 EBLHD(480, 22) 2 × 2 × 2

3 4 EBLHD(480, 22) 2 × 2 × 2

3 5 EBLHD(600, 22) 2 × 2 × 2

3 6 EBLHD(720, 22) 2 × 2 × 2

4 5 EBLHD(800, 22) 2 × 2 × 2

4 6 EBLHD(960, 22) 2 × 2 × 2

OA(9, 4, 3, 2) 2 3 EBLHD(54, 6) 3 × 3

2 4 EBLHD(72, 6) 3 × 3

2 5 EBLHD(90, 6) 3 × 3

2 6 EBLHD(108, 6) 3 × 3

3 4 EBLHD(108, 6) 3 × 3

3 5 EBLHD(135, 6) 3 × 3

3 6 EBLHD(162, 6) 3 × 3

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

42 WEN et al.

T A B L E C3 (Continued)

OA(n,k, s, t) s1 s2 EBLHD(n ⋅ s1s2,p) Stratification
4 5 EBLHD(180, 6) 3 × 3

4 6 EBLHD(216, 6) 3 × 3

5 6 EBLHD(270, 6) 3 × 3

OA(18, 7, 3, 2) 2 3 EBLHD(108, 9) 3 × 3

2 4 EBLHD(144, 9) 3 × 3

2 5 EBLHD(180, 9) 3 × 3

2 6 EBLHD(216, 9) 3 × 3

3 4 EBLHD(216, 9) 3 × 3

3 5 EBLHD(270, 9) 3 × 3

3 6 EBLHD(324, 9) 3 × 3

4 5 EBLHD(360, 9) 3 × 3

4 6 EBLHD(432, 9) 3 × 3

5 6 EBLHD(540, 9) 3 × 3

OA(54, 5, 3, 3) 2 3 EBLHD(324, 7) 3 × 3 × 3

2 4 EBLHD(432, 7) 3 × 3 × 3

2 5 EBLHD(540, 7) 3 × 3 × 3

2 6 EBLHD(648, 7) 3 × 3 × 3

3 4 EBLHD(648, 7) 3 × 3 × 3

3 5 EBLHD(810, 7) 3 × 3 × 3

3 6 EBLHD(972, 7) 3 × 3 × 3

OA(16, 5, 4, 2) 2 3 EBLHD(96, 7) 4 × 4

2 4 EBLHD(128, 7) 4 × 4

2 5 EBLHD(160, 7) 4 × 4

2 6 EBLHD(192, 7) 4 × 4

3 4 EBLHD(192, 7) 4 × 4

3 5 EBLHD(240, 7) 4 × 4

3 6 EBLHD(288, 7) 4 × 4

4 5 EBLHD(320, 7) 4 × 4

4 6 EBLHD(384, 7) 4 × 4

5 6 EBLHD(480, 7) 4 × 4

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12786 by N

ortheast N
orm

al U
niversity, W

iley O
nline L

ibrary on [19/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

	Enhanced branching Latin hypercube design and its application in automatic algorithm configuration
	1 INTRODUCTION
	2 NOTATION AND PRELIMINARIES
	3 CONSTRUCTION OF EBLHDS WITH EQUAL-LEVEL BRANCHING FACTORS
	3.1 Construction of EBLHDs
	3.2 Construction of stratification-enhanced SLHDs

	4 CONSTRUCTION OF EBLHDS WITH MIXED-LEVEL BRANCHING FACTORS
	5 SIMULATION
	6 APPLYING EBLHDS FOR THE ALGORITHM CONFIGURATION PROBLEM
	6.1 Applying EBLHDs for Optim
	6.2 Applying EBLHDs for ACOQAP

	7 CONCLUSIONS
	FUNDING INFORMATION
	ORCID
	REFERENCES

	A PROOFS OF THE MAIN THEORETICAL RESULTS
	A.1 Proof of Theorem 1
	A.2 Proof of Proposition 3
	A.3 Proof of Theorem 3
	A.4 Proof of Theorem 4
	A.5 Proof of Theorem 5

	B NOTES ON THE DESIGNS AND SIMULATIONS
	B.1 The SLHD in Example 4
	B.2 The simulations in Table 5
	B.3 On the simulation studies
	B.4 On the applications in Section 6

	C CONSTRUCTION RESULTS

